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Foreword

The book contains courses taught to a public of Ph.D. students, post-docs and
confirmed researchers in all fields of heliospheric plasma physics. It aims at
identifying physical issues which are common to two different fields of astron-
omy: solar and magnetospheric physics. Emphasis is given to basic processes
of transport and conversion of energy: magnetic reconnection is discussed in
detail from the viewpoints of MHD and kinetic physics. Processes of charged
particle acceleration are reviewed and confronted with recent observations.
The subject is introduced by a summary of MHD and the basic structures
and parameters of the solar atmosphere, terrestrial ionosphere and magne-
tosphere are reviewed. The book combines a pedagogic and comprehensive
presentation of physical issues and raises fully open questions, with the com-
plementary and sometimes conflicting views of geophysicists and solar physi-
cists. The book’s focus, while basic, opens new avenues.

Observatory of Meudon, France Ludwig Klein
IAS, Orsay, France Jean-Claude Vial
OCA, France Jean-Pierre Rozelot
August 2000 The Editors



Preface

Following the great success of the first two CNRS Summer Schools on Solar
Astrophysics held in Oléron (May 1996 and May 1997 – two schools devoted
to the highlights of solar physics), I came to the conclusion that the initiative
should be continued. A new programme committee, consisting of

Claudio Chiuderi (Observatory of Arcetri, Florence),
Ludwig Klein (Observatory of Meudon, France),
Joseph Lemaire (Space Laboratory for Astronomy, Brusselles, Belgium),
Alain Roux (CETP, Velizy, France),
Jean-Claude Vial (IAS, Orsay, France),
and Jean-Pierre Rozelot (OCA, France),

was set up and embarked on the organization of this third school. The basic
idea was that, in view of the recent exciting developments in the physics of the
solar corona, the magnetosphere, and boundary between the two, the solar
wind, the committee decided it was important to unite the solar physics and
magnetospheric communities, which had been separated for so long. Within
this framework, people could effectively interact, exchange new scientific ideas
and establish a common language to overcome the technical barriers between
the two fields. At the same time they could try by analyzing recent break-
throughs, and so make progress in the two major areas of:

• magnetic reconnection;
• and the process of acceleration.

We wished to establish a general framework in which these highly spe-
cialized, but intersciplinary fields could be furthered. It seemed to us essen-
tial that young researchers should be aware of underlying hypotheses and
to acquire the necessary techniques and tools for calculation. Also equally
important is that everyone understands the limits that are imposed by the
instruments used for understanding the physical environments of the corona
and magnetosphere.

This Workshop was thus devoted to “Magnetic Reconnection” and the
courses covered:

• a general introduction (to MHD), recalling basic physics notions and
establishing a common basis;



VIII Preface

• a review of classical aspects of magnetic reconnection, which is an impor-
tant mechanism that changes the toplogy of sheared magnetic fields and
converts magnetic energy to both thermal energy and the acceleration of
plasma;

• an overview of the role of the magnetic field in the solar atmosphere and
how magnetic reconnection can be driven by the emergence of sheared
magnetic field;

• a comprehensive introduction to the physics of magnetospheric plasmas,
proposing the key approaches needed to gain new insight into the struc-
ture and some specific processes the magnetosphere;

• a new self consistent kinetic approach of collissionless plasmas.

In its “Lecture Notes”, Springer Verlag gives an excellent opportunity to
voice the best of the scientific thought in this field. I am particularly grateful
to all speakers, namely, Giorgio Einaudi, Pascal Démoulin, Olivier Le Contel,
Philippe Louarn, Clare Parnell and René Pellat, for their formal or informal
contributions. Moreover, the innumerable individual discussions appeared to
fit well with the overall aim of the School. Nearly all the plenary lectures
are collected in this volume. From that point, I wish to warmly thank the
authors for the careful preparation of their manuscripts.

This monograph, one of the first comprehensive reviews available on the
subject is intended for astrophysicists who are seeking an introduction to the
physics of magnetic reconnection inside the heliosphere, and for students at
graduate level.

Finally, this school would not have been possible without the financial sup-
port of the “Formation Permanente du CNRS”. This same institution also
kindly sponsored the fourth CNRS Summer School, which was held from the
21st to the 25th of June, 1999, in Oléron on the Data Analysis for Astro-
physics and Geophysics.

Grasse, France
July 2000 Jean-Pierre Rozelot
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Introduction to MHD

Jean Heyvaerts

Observatoire de Strasbourg, 11, rue de l’Université, 67000 Strasbourg; email:
heyvaert@astro.u-strasbg.fr

Part I: Straightforward MHD

1 What Is a Plasma?

A plasma is a conducting fluid, gas or liquid. The plasma state is found in
nature under a wide variety of different physical conditions, very dense or
very tenuous, very hot or cold. Ionization, total or partial, allows for elec-
tric current conduction. It may be caused by the thermodynamic state of
the medium, as for example the high temperature of the solar coronal gas,
or, as is the case in the interior of white dwarf stars, the high density of
the medium, electrons becoming quantum-degenerate. Alternatively, a cold
medium can be ionized by some external agent, such as solar UV irradiation
in the upper terrestrial atmosphere (the ionosphere) or by cosmic rays pen-
etrating molecular clouds in the interstellar medium. Such a fluid, especially
when under-dense, may not be “hydrodynamical” in character, like air or
water. We come back on this in some detail in Part II. As for now, we shall
simply assume uncritically that a plasma really behaves like a regular fluid
and is well described by “Magneto-Hydro-Dynamic” fields (MHD fields for
short), which are local macroscopic properties of the fluid which depend on
position in space, r, and on time, t, namely:

• The mass density of the fluid ρ(r, t)
• Its local velocity v(r, t)
• Its local pressure P (r, t)
• Its local temperature T (r, t)
• The local magnetic field B(r, t)
• The local electric current density j(r, t)
• The local electric field E(r, t)

and, more generally, any quantity necessary for specifying the state of the
plasma and of its electromagnetic environment. Some other quantities, as
for example the internal energy density, can be expressed in terms of the
above ones, which themselves may in some instances not be independent of
eachother. The MHD description of plasma evolution rests on the equations
obeyed by these MHD fields, which we establish from a fluid dynamics point
of view in Part I. This viewpoint however does not exhaust all the physics
involved in plasma dynamics. We come back in Part II on this from a gas
kinetic point of view. The relations between these two approaches will then
be discussed.

J.-P. Rozelot, L. Klein, J.-C. Vial (Eds.): LNP 553, pp. 1–58, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



2 Jean Heyvaerts

2 Conservation Equations

2.1 Densities

In a continuous medium, the distribution in space of extensive quantities, such
as mass, energy, electric charge or momentum is characterized by volume-
densities, which are functions of position and time.

2.2 Fluxes

A flux characterizes the transport in space of these quantities. The flux of a
scalar quantity,G say, is a vector Φ defined as follows. Let dS be an (oriented)
surface element about the point r. The amount dG of quantity G that goes
through dS between times t and t+ dt is expressed as:

dG = (Φ · dS) dt (1)

This relation defines the flux vector Φ(r, t) at point r and time t. Note that
dG is algebraic. It is positive when transport takes place in the sense of dS.

2.3 Tensorial fluxes of Vectorial Quantities

If the extensive quantity G is vectorial in nature, such as momentum, its
density is also vectorial while its flux is a second-order tensor. Let us precise
what a tensorial flux is. Suppose we describe the transport of quantity G
in some arbitrarily chosen cartesian rest-frame, R. G has three components,
Gx , Gy and Gz which are “numerical” quantities, though not “scalar” ones
because their values would change if we were to change reference frame. There
is no diffficulty, in rest frame R, in defining a density and a flux vector for
each of these “numerical” quantities. Let us call them gb and Φb respectively,
the index b taking the values x, y or z. Each of the three vectors Φb has three
components which can be labeled by an index a. The a-component of Φb is
noted Φab. Since both a and b can take three values, there are nine numbers
Φab. They satisfactorily characterize the transport of the extensive vector
quantity G, but, at this point, they do so in rest frame R only. What if we
change reference frame? Let us go to another cartesian frame R′. The change
from R to R′ is characterized by a matrix Xb′

b which relates the components
of a vector in R′, call them V b′

, to those which it owes in frame R, call them
V b, by:

V b′
=
∑

b

Xb′
b V

b ≡ Xb′
b V

b (2)

In the second term of this expression the very convenient “dummy index rule”
has been used. It states that whenever in an expression some index is twice
repeated, there is an implicit summation on the values that it may take. For
example, in the last term of equations (2), index b is repeated, which implies,
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according to this rule, that it really means the sum written in the second
term of the equation. This transformation rule applies to the components of
G, therefore:

Gb′
= Xb′

b G
b (3)

Moreover, the “flux of a sum” is obviously the “sum of the fluxes” (this is
implicit in the definition of a flux), a property which holds more generally
true for a linear combination. Therefore the flux of the b′ component of G is

Φb′
= Xb′

b Φb (4)

The quantity Φa′b′
is the a′-component in rest frame R′ of vector Φb′

. It is
obtained from the components Φab′

of Φb′
in R by the transformation rule

of components:

Φa′b′
= Xa′

a Φ
ab′

(5)

The a-component of equation (4) gives:

Φab′
= Xb′

b Φ
ab (6)

whence, by (5),

Φa′b′
= Xa′

a X
b′
b Φ

ab (7)

The similarity of this frame transformation rule with the one which applies
for vectors is noteworthy. The difference rests in the number of indices needed
to label the components. A vector component is labeled by one index while
the quantities Φab or Φa′b′

are labeled by two and this reflects in the number
of frame transformation matrices needed to pass these quantities from one
to the other frame: one matrix for vector components, two matrices for the
Φab’s. This leads to the idea that a genuinly geometrical object is hidden
behind the Φab numbers, which are to be regarded as the “components” in R
of this truely geometrical object. One should really think of it as a geometrical
entity, independent of the rest frame, eventhough, unlike vectors, a graphical
representation of it is difficult. This object is a “second-rank tensor”. The
notation for it will be Φ or sometimes just Φ when there is no ambiguity
about its rank. The quantities Φab are the “components” of the tensor Φ in
R and the quantities Φa′b′

are the components in R′ of this very same tensor.
For simplicity we have defined here only cartesian components of second rank
tensors to avoid entering in complications associated with general coordinate
systems and distinguishing between contravariant and covariant components.
More can be read on this in books dealing with riemannian geometry. There is
usually an introductory chapter on this subject in any general relativity book.
Operations on tensors are simple (see, for example, in this series, Heyvaerts
1991) and will be introduced here when necessary.
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2.4 Volumic Rate of Creation

The quantity G, be it scalar or vector, can usually be created or destroyed.
Such processes can be characterized by a volumic rate of creation, s, a scalar
or a vector according to the nature of G. This rate is defined such that the
amount dGcr of quantity G which appears in an infinitesimal volume d3r
near point r in dt seconds could be written as:

dGcr = s d3r dt (8)

Disappearance of some amount of G is accounted for by a negative value of
the creation rate s.

2.5 Conservation Equations

It is a rather trivial statement that the change dG between times t and t+dt
of the quantity G present in a small volume V ≡ d3r can be expressed as the
sum of two parts. One is the amount of G that has entered V or has left it
through its border B, which we note dGin/out and the other is due to internal
changes of the amount of G inside V itself, dGinside, say.

dG = dGin/out + dGinside (9)

By the definition of the volumic rate of creation s the latter is:

dGinside =
(∫

V

s(r, t)d3r

)
dt ≈ sV dt (10)

and, by the definition of flux, the former, which is the balance of imports and
exports through B, is: written as:

dGin/out =

(∫
B(V )

Φ · dSin

)
dt (11)

In this expression dSin, a surface element normal to the boundary B, is
oriented towards its inside, so that imports are counted as positive. Paying
due attention to this in using the flux-divergence theorem, we obtain, for
infinitesimal V :

dGin/out ≈ −(divΦ) V dt (12)

The quantity dG can also be expressed in terms of the time variation of the
density g by:

dG = d

(∫
V

g d3r

)
≈ V

∂g

∂t
dt (13)

From (9), (10), (12) (13) we obtain the so-called conservation equation for
G:

∂g

∂t
+ div(Φ) = s (14)
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If the quantity is vectorial, so are its density and volumic rate of creation.
Its flux is a second rank tensor Φ, the divergence of which is a vector with
cartesian component-a defined by

(divΦ)a =
∂Φba

∂xb
≡ ∇bΦ

ba (15)

The conservation equation for G is:

∂g

∂t
+ divΦ = s (16)

Exercise: write down the conservation equation for an extensive quantity G
which is second rank tensor in nature; define its flux and make explicit the
rules for changing its components when changing reference frame.

3 Derivative Following the Motion

It sometimes turns out to be useful, when dealing with fluids, to apply known
laws of physics, such as the fundamental law of mechanics or laws of ther-
modynamics, to some well defined parcel of fluid. Such a fluid parcel moves
and changes shape as it does. An observer riding it observes time-dependent
local physical quantities such as density, temperature, average velocity of the
parcel. Consider again an extensive quantity G, such as mass or energy or mo-
mentum. In the ususal “eulerian” description of the fluid, introduced above,
the distribution of G in space is described by its density field, the function
g(r, t), where r is some fixed point in the rest frame used to describe the fluid
motion. A particular fluid parcel would have in this frame a motion described
by r(t), say. The density function g(t) seen by an observer which follows it
is the “lagrangean” variation of the density (i.e. following the motion of that
particular parcel), or lagrangean density for short. It is related to the eulerian
density field g(r, t) by

glagr(t) ≡ g(t) = g(r(t), t) (17)

The derivative with respect to time of glagr(t), also named “derivative fol-
lowing the motion” or “lagrangean derivative” is easily calculated from the
derivative chain rule:

dg

dt
=

d

dt
(g(x(t), y(t), z(t), t)) =

∂g

∂t
+
∂g

∂x

dx

dt
+
∂g

∂y

dy

dt
+
∂g

∂z

dz

dt
(18)

Note that dx/dt etc.. are the components of the velocity of the parcel of fluid,
which allows to condensate this expression as:

dg

dt
=
∂g

∂t
+ v · ∇g (19)
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The lagrangean time derivative should not be mistaken for the eulerian partial
derivative with respect to time, ∂g/∂t, which is calculated at a fixed point
in the “laboratory” reference frame. This important difference is taken care
of by using a specific notation for the lagrangean derivative with respect to
time, usually D/Dt, sometimes simply d/dt:

D/Dt = ∂/∂t+ v · ∇ (20)

If the quantity under study is vectorial, the definition of the lagrangean
derivative of each of its cartesian components remains as given by equation
(19): the (v ·∇) operator acting on a vector field A(r, t) gives a vector whose
cartesian a-component is:

((v · ∇)A)a ≡ (vj∇j)Aa (21)

4 Mass Conservation Equation

Let ρ be the mass density. The mass flux reduces to its “convected” part ρv.
This this is best seen by coming back to the definition of flux and calculat-
ing how much mass passes in dt seconds through a surface element dS. In
non-relativistic physics mass is globally conserved, being neither created nor
destroyed, eventhough the mass of particular constituents may change, for
example in chemical reactions. So the volumic rate of creation of mass as a
whole is nil and the equation of conservation for mass can be written as:

∂ρ

∂t
+ div(ρv) = 0 (22)

Exercise: Write down the equation of conservation for the number of molecules
of a certain particular constituant of the fluid, taking into account chemical
reactions represented by an appropriate rate. For simplicity neglect element
diffusion with respect to the bulk of the fluid.

5 Electric Charge Conservation Equation

Let ρe be the electric charge density. By its definition, the electric current
density j is the charge flux. It consists of two parts. One, the so-called “con-
vected current”, is due to the bulk motion of electric charge with the fluid.
It can be written as ρev. The other, the so-called conducted current jcond,
takes care of the fact that charge is carried by different charge carriers, i.e.
electrons, different types of ions etc.., Each species, α, has its own species-
velocity vα(r, t). The velocity v(r, t) of the fluid as a whole is the average
value of the vα’s weighted by their mass density ρα while the total electric
current density is its average weighted by their charge density ρe,α. Since
the weighting is different for mass and charge densities, and the vα’s differ
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slightly from the local global fluid velocity v, by a difference δvα say, the to-
tal current does not simply reduce to its convected part ρev. The difference
is the conduction current:

jcond =
∑
α

ρeα δvα (23)

Had we made the same reasoning for mass, we would have found that the
“conduction” flux of mass is identically zero, because the fluid velocity as a
whole is defined as the average value weighted by mass density of the different
species. Summing up, we have shown that the electric current is the sum of
two terms

j = ρev + jcond (24)

Electric charge being globally conserved (no net charge creation or destruc-
tion in any process whatsoever), its volumic rate of creation is nil. So the
charge conservation equation is just

∂ρe

∂t
+ divj = 0 (25)

This equation results from Maxwell’s equation as well, or is expressed implic-
itly by them if one prefers to think of it that way. Conservation equations,
like those for mass or charge, which are devoid of “source term” (i.e. of vo-
lumic rate of creation term) are said to be “perfect” conservation laws. This
is because the change of the associated extensive quantity in some volume
V , infinitisemal or not, is only due to incomes or outcomes through the vol-
ume boundary B, implying that the change inside V is compensated by an
opposite change in its outside, the quantity being globally exactly conserved
when summing inside and outside.

6 Momentum Conservation Equation

6.1 Matter Momentum Conservation Equation

Obviously the density of momentum of matter is � = ρv. What are its
flux and volumic rate of creation? To determine them, let us come back to
the basics and apply the fundamental law of mechanics to a fluid parcel,
following it in its motion. Let V (t) be its (infinitesimal) volume at time
t. Though its volume and its density separately change, its mass m = ρV
remains unchanged because it consists of some well defined bit of matter
(set of molecules). The acceleration γ of this little body is the lagrangean
derivative of its velocity:

γ = ∂v/∂t+ (v · ∇)v (26)

The forces exerted on the parcel of fluid are either volume-forces or contact-
forces, the latter being due to the action on the parcel of its fluid environment.
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Volume forces are characterized by force densities, f , such as the gravitational
force density

fgrav = ρg (27)

or the electromagnetic force density

fem = ρeE + j × B (28)

Other volume forces might be considered, depending on the situation, for
example forces resulting from the emission or absorption of radiation by the
fluid, which is electro-magnetic in nature, though maybe quantum, and there-
fore often not macroscopic enough to be conveniently represented in the form
of an electromagnetic force density. Let us loosely call these other force den-
sities fother. Contact forces can be expressed as integrals on the surface
bordering V , B(V ). They consist of pressure and viscosity forces. The total
pressure force on the parcel is

F press =
∫

B(V )
P dSin (29)

where P is the pressure and dSin the surface element on B(V ) oriented
to the inside of V , so that the force exerted by the outside onto the inside
be obtained. The viscosity forces exerted on an interface element dS are
represented by a second rank tensor of viscous stresses, σ, such that the
viscosity force exerted through dS by the outside on the inside is expressed
as:

dF visc = σ · dSout (30)

The sign convention for the definition of the viscous stress tensor is such
that, unlike for the pressure force, the surface element should appear here
as oriented outwards. In Part II we shall give an explicit expression for this
viscous stress tensor. The dot product of σ with a vector A is defined as being
a vector, V = σ · A, the a-component of which is defined by V a = σamAm.
The total viscosity force exerted on the fluid parcel is then

F visc =
∫

B(V )
σ · dSout (31)

The flux-divergence theorem can be used to transform these expressions into
volume integrals. This theorem holds for surface integrals of tensors as it does
for vectors. To convince oneself note that, in a given reference frame, each
component of these forces is given by a familiar surface integral of a vector
type to which the usual form of the theorem applies. Then

F press + F visc =
∫

V

(−∇P + div σ
)
d3r ≈ V div σ − V ∇P (32)
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Let us now express the fundamental law of mechanics F = mγ using expres-
sions obtained above for the acceleration and for the forces. After simplifying
the common volume factor V we are left with

ρ (∂v/∂t+ (v · ∇)v) = ρg + ρeE + j × B + fother + div σ − ∇P (33)

This does not look like the expected conservation equation yet. However
simple manipulations reduce it to the desired form. Note, for example that

ρ ∂v/∂t+ ρ (v · ∇)v = ∂(ρv)/∂t+ div(ρvv) (34)

This is easily shown using mass conservation, noting that, by definition, the
tensor product uv of two vectors u and v has ab-component uavb. In partic-
ular the tensor ρvv has ab-component ρvavb. Also,

∇P ≡ div(P δ) (35)

where δ is the unit tensor, the components δab of which are the Kronecker
symbols (zero if a �= b, 1 if a = b). Then the fundamental law of mechanics
for the fluid parcel takes the following conservative form:

∂(ρv)/∂t+ div(ρvv + P δ − σ) = ρg + ρeE + j × B + fother (36)

The first term is the time-derivative of the momentum density, while the
second is the divergence of its tensorial flux, ψ, a tensor that appears to
be the sum of a convected part ρvv and of microscopic momentum fluxes
(the term “conductive fluxes” is not used in this case) which consist of a
pressure tensor Pδ and of a viscosity momentum flux tensor −σ. The sum
of force densities on the r.h.s. of the equation is the volumic rate of matter
momentum creation.

6.2 Density and Flux of Electromagnetic Momentum

We are familiar with the notion that the momentum of an isolated system is
conserved. Isn’t it surprizing then that the volumic rate of creation of mo-
mentum does not vanish, as did those of mass and charge, which are also
globally conserved quantities? But indeed this is not, because the momen-
tum for which a conservation equation has just been written is that of matter
only, which is not an “isolated” system. Matter interacts with other entities
such as gravity and electromagnetic fields. This really means that momentum
is exchanged between the constituents of the total system, i.e matter, elec-
tromagnetic fields, photons (if they interact with matter) and gravity. It was
then to be expected that the momentum of matter alone would not be glob-
ally conserved. Since electromagnetic and gravitational fields carry no mass
nor charge, matter mass and electric charge are globally conserved, but this
is not so for momentum. Would it then be possible to define the momentum
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of the electromagnetic field, of the gravity, etc.., all quantities which, added
to the matter momentum would constitute a globally conserved quantity?
Newtonian theory of gravitation is imperfect in this respect in that it allows
propagation of gravitational signals at infinite speed. It is impossible to de-
fine for it, in that framework, a density and a flux of momentum. But the
Maxwell theory of electromagnetism easily lends itself to such a definition for
electromagnetic fields. It is often simpler to look at radiation from a particle
point of view rather than from a field point of view, which makes it easy to
define such quantities for photon populations as well. Using those Maxwell
equations which involve ρe and j to eliminate these quantities from the ex-
pression of the Lorentz force density, then rearranging using vector calculus
relations, it can be shown that:

ρeE + j × B = − ∂

∂t

(
E × B

μ0c2

)
− div

((
ε0E

2

2
+
B2

2μ0

)
δ − ε0EE − BB

μ0

)
(37)

Substituting this in the matter momentum conservation equation we obtain a
more global equation of conservation for material and electromagnetic forms
of momentum, namely:

∂

∂t
(ρv +

E × B

μ0c2
)

+div

(
ρvv + (P +

ε0E
2

2
+
B2

2μ0
) δ − ε0EE − BB

μ0
− σ

)
= ρg + fother (38)

The momentum density of the electromagnetic field is (E × B)/μ0c
2 and its

momentum flux tensor, the Maxwell stress tensor, is

ψem = (ε0E2/2 +B2/2μ0) δ − ε0EE −BB/μ0 (39)

The momentum conservation equation still has a gravitational source term,
an unavoidable fact if indeed the system interacts with gravitation. As said
above, no suitable rearrangement of this term is possible in the framework
of classical theory of gravitation. If other volume forces remain on the r.h.s
of the conservation equation, one may or not, depending on their nature,
express them in conservative form as we did for electromagnetism. Usually
this is possible because these entities often consist of particles of some type,
photons, neutrinos, cosmic rays, etc.

7 Matter Internal Energy Conservation Equation

The distribution of internal energy of the fluid Eint, is characterized by an
internal energy density U(r, t), given in terms of temperature and density by
an equation of state. Its flux consists as usual of a convected part, Uv, and
a conducted, or microscopic, part, the heat flux q. Several effects contribute
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to the volumic rate of internal energy creation, such as fluid compression or
expansion, viscous or Joule dissipation, radiative losses or radiative heating
and so on. Expressions of the associated source terms can be precised by
applying the first law of thermodynamics to a given parcel of fluid which we
follow in its motion. Then:

dEint = dQ− dT (40)

where dQ is the amount of heat received by the parcel in dt seconds and dT is
the work exerted against external world by it during the same lapse of time.
This work reduces to the familiar expression PdV when viscous forces can
be neglected but is otherwise more complicated. To follow the motion of the
parcel, let us identify some material point inside it, M0, which we refer to as
the parcel’s “center” and follow in its motion. Let v0 be the instantaneous
velocity of M0. The velocity in the lab frame of another piece of fluid in the
parcel placed at r at time t is v0 + c(r, t). Of course c(M0) = 0. Note also
that divv = divc. Since the parcel of fluid is meant to be infinitesimal, the
vector field c is itself in the parcel a very small vector, scaling proportionally
to the dimension ε of the parcel, the volume of which goes as ε3. The volume
V of the parcel and its boundary B vary in time. A surface element dSout on
B moves with respect to the center at a velocity c. It sweeps in dt seconds an
(algebraic!) volume δV = cdt · dSout which, by this choice of the orientation
of dS is positive if the motion tends to increase the volume of the parcel
and negative otherwise. The change dV of the volume V of the parcel in
these dt seconds is obtained by integration on the surface B bounding V .
Using the flux divergence theorem and taking advantage of the fact that V
is infinitesimal, we get the volume change in the form:

dV =
∫

B(V )
cdt · dSout ≈ V dt divv (41)

The internal energy Eint contained in V is approximately UV . Since U and
V both change in the course of time,

dEint = V dU + U dV = V dU + U V dt divv (42)

Let us now calculate the amount of heat received by the parcel, which consists
of that part which is deposited in its volume, dQint, an algebraic quantity
since both volume heating and cooling need to be considered, and of that part
associated to incomes and outcomes through the border B, dQin/out. Note
that the difference between internal and surface contributions may sometimes
be rather subtle. Heating or cooling by radiation for example is the integral
on surface B of the radiative energy flux, but for optically thin media, this
reduces to the volume integral of the emission. Let us denote byH the volumic
rate of internal heating, a positive or negative quantity. Then:

dQint = H V dt (43)
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The incomes and outcomes by heat conduction are given in terms of the heat
flux q by:

dQin/out =
∫

B(V )
q · dSin ≈ −V dt divq (44)

Let us now calculate the work exerted by the parcel on the external world in
dt seconds. It consists of the work of volume and contact forces. A moment’s
thought shows that the work of the former, calculated in the rest frame which
instantaneously accompanies the parcel’s motion, is negligible because it is
of order of the product |c||f |V where c is the velocity with respect to the
parcel’s center, of order ε, f is the density of force and V the volume, of order
ε3. The result is O(ε4), one order in ε larger than other retained terms. For
example the work of surface forces is typically of order dt|c|PS where S is
the surface of B, which scales as ε2, so that the surface force term scales as
ε3. To be specific, the work exerted by the forces that the fluid of the parcel
exerts at its boundary on the outer world is

dT =
∫

B(V )
cdt · (P dSout − σ · dSout

)
(45)

The dot-product c · σ is a vector, the i-component of which is cjσji. Us-
ing the flux-divergence theorem and developing div(Pc), we obtain, for an
infinitesimal volume V :

dT = V dt
(
div(Pc) − ∇i(cjσji)

)
=

V dt
(
Pdivc + c · ∇P − (∇ic

j)σji − cj(∇iσ
ji)
)

(46)

Terms having factors proportional to c are negligible, being O(ε4). The partial
derivatives of c(r, t) with respect to space are not small, though, and equal
similar derivatives of v. In particular div c = div v. Thus

dT = V dt
(
Pdiv v − σji(∇iv

j)
)

(47)

which, in geometrical terms, expresses as:

dT = V dt
(
Pdiv v − (σ · ∇) · v

)
(48)

So, the first law of thermodynamics applied to the fluid parcel takes the form:

V dU + V dt Udivv = (HV dt− V dt divq) − V dt
(
Pdivv − (σ · ∇) · v

)
(49)

Using the further relation dU = (dU/dt)dt where (dU/dt) is meant to be the
lagrangean derivative of U , and simplifying by V dt, we obtain:

∂U/∂t+ div (U v + q) = H − Pdivv + (σ · ∇) · v (50)

Once more, this equation is not perfectly conservative. This is no surprise,
since it expresses fluid internal energy balance only. But this form of energy
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is exchanged in the interaction process with other forms of energy, such as
kinetic energy of organized motions, electromagnetic energy, etc... The vo-
lumic rate of creation which is seen on the r.h.s of equation (50) describes
these exchanges. As for momentum, it is possible to write down conservation
equations for more global forms of energy, for example fluid internal and ki-
netic energy, or internal, kinetic, and electromagnetic energy, etc.. The next
chapter is devoted to establishing these conservation equations.

8 Conservation Equations for More Forms of Energy

8.1 Fluid Internal and Kinetic Energy Conservation Equation

To form the conservation equation for kinetic energy of organized (as op-
posed to thermal) motions, the density of which is ρv2/2, we dot-multiply
the equation of motion by v. Some further algebraic manipulations reduce
this, using mass conservation, to:

∂

∂t

(
1
2
ρv2

)
+ div

(
1
2
ρv2 v

)
=

−v · ∇P + v · divσ + ρv · g + v · (ρeE + j × B) + v · fother (51)

Adding this with the conservation equation (50) for the internal energy of
the fluid we get, after simple algebra:

∂

∂t

(
1
2
ρv2 + U

)
+ div

(
1
2
ρv2 v + (U + P )v + q − v · σ

)
=

ρv · g + v · fother + v · (ρeE + j × B) +H (52)

In the first term we recognize the kinetic and internal energy density of
the fluid, and under operator div, in the second term, we see the flux of
internal and kinetic energy which consists of a convected kinetic energy flux,
an enthalpy flux (enthalpy is Eent = Eint +PV and its density is h = U+P ),
the heat flux , q, and the energy flux associated to viscosity, −v·σ. The source
terms on the right hand side represent exchanges of energy with other forms
of it, electromagnetic in particular.

8.2 Internal, Kinetic and Electromagnetic Energy
Conservation Equation

It is again possible to transform the source terms associated to exchanges
between material and electromagnetic energy so that they appear in conser-
vative form, and constitute with the other terms a conservation equation for
the sum of material and electromagnetic energy. To achieve this, the Joule
heating term, which participates exchanges between these forms of energy
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must be singled out of the general volume heating term H. We then write it
as

H = Hjoule +Hother = j2fluid/σe +Hother (53)

where jfluid is the electric current density as observed in the rest frame where
the piece of fluid located at r is instantly at rest. It is given by Ohm’s law,
jfluid = σe Efluid. It has been asumed here that the electrical conductivity
σe is isotropic. The vector Efluid is the electric field observed in the fluid’s
rest frame. In the galilean approximation, it is related to the electric and
magnetic fields in the lab frame, E and B, by

Efluid = E + v × B (54)

The electric current density in the lab frame is, on the other hand, given by:

j = jfluid + ρev (55)

from which it is deduced that

Hjoule = jfluide · (E + v × B) (56)

Hjoule+v·(ρeE+j×B) = jfluide·(E+v×B)+ρeE·v+v·((jfluide + ρev) × B)
(57)

After some simplifications owing to vanishing or identical mixed products we
are left with:

Hjoule + v · (ρeE + j × B) = (ρev + jfluide) · E = j · E (58)

Using Maxwell’s equations j ·E can finally be reduced to a conservative form:

j · E = − ∂

∂t

(
ε0E

2

2
+
B2

2μ0

)
− div(

E × B

μ0
) (59)

Inserting this in the material energy conservation equation, we get:

∂

∂t

(
1
2
ρv2 + U +

1
2
ε0E

2 +
1
2
B2

μ0

)
+

div
(

1
2
ρv2v + (U + P )v + q − v · σ +

E × B

μ0

)
= ρv · g + v · fother +H �=joule (60)

8.3 Internal, Kinetic, Gravitational and Electromagnetic Energy
Conservation Equation

Further progress can be achieved in globalizing the forms of energy included
in the balance if the gravity in which the plasma moves is independent of time.
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This is consistent with actual fluid motion if self-gravitation is negligible. Let
G be the gravitational potential. The following relations hold true, the last
one implying time independence of G:

ρv · g = −ρv · ∇G = −(div(ρvG) −Gdivρv)

= −div(ρvG) −G(
∂ρ

∂t
) = − ∂

∂t
(ρG) − div(ρvG) (61)

A conservation equation for the internal, kinetic, electromagnetic and gravi-
tational forms of energy is thus obtained in the form:

∂

∂t

(
1
2
ρv2 + U +

1
2
ε0E

2 +
1
2
B2

μ0
+ ρG

)
+

div
(

1
2
ρv2v + (U + P )v + q − v · σ +

E × B

μ0
+ ρGv

)
= H �=joule+v·f �=g,E,B

(62)

9 A Provisional Synthesis

To sum up, the equations of MHD consist of

• The three conservation equations for mass, momentum and energy.
• The Maxwell equations which determine the electric variables.
• The necessary equations of state, like P (ρ, T ) and U(ρ, T ).
• Phenomenological relations which give the microscopic fluxes.

These are the heat flux q, the conduction electric current density, jcond

and the viscous stress tensor σ. Physical laws, valid when the fluid is every-
where near a state of thermodynamic equilibrium, are deduced from kinetic
theory of gases and plasmas (see part II) to give them in terms of gradients
of MHD variables, such as density, fluid velocity, temperature, magnetic and
electric field. One such law is, for example, Fourier’s heat conduction law
which gives the heat flux in terms of the temperature gradient, another one
is Ohm’s law which gives the conducted electric current density in terms of
the electric field.

10 Subrelativistic Limit

Considerable simplification is obtained in the limit of sub-relativistic motions,
an assumption which was already implicit in our use of the fundamental law
of newtonian mechanics. We then now consider the fluid velocity to be much
less than the speed of light, c, and the phase velocity of waves which propagate
in the fluid to be also small as compared to it. We recall that the square of
the speed of light is c2 = 1/(ε0μ0) where ε0 is the dielectric permittivity of
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vacuum and μ0 its magnetic permeability. Let T be the characteristic time
over which the MHD variables vary and L be the characteristic scale length
of these variations. In sub-relativistic conditions as defined above the ratio
V ≡ L/T is of order of the fluid velocity or of order of the phase velocity
of MHD waves propagating in this plasma. Assume both to be much less
than the speed of light, c. The temporal derivative of any quantity X being
estimated, in rough order of magnitude, to be comparable to X/T , and any
of its partial derivative with respect to space coordinates, whichever operator
it is involved in, being roughly estimated as comparable to X/L, it is easily
found, from Faraday equation rotE = −∂B/∂t that the ratio E/B ≈ V . This
estimate is incorrect only in the exceptional situation when the fluid is placed
in a very intense external electrostatic (i.e curl free) field. Assume that this
is not so. From the above result we can deduce that the displacement current
ε0∂E/∂t is negligible compared to rotB/μ0. Indeed their ratio is of order
(ε0E/T )/(B/μ0L) which is about V 2/c2. The Maxwell’s equations can then
be simplified by reduction to the magnetostatic approximation, in which the
displacement current is ignored. The convected electric current ρev then turns
out to be negligible compared to the total electric current, j, because their
ratio is (ε0 divE)V/(rotB/μ0), which is again of order V 2/c2. This implies
that the electric current essentially reduces to the conduction current. A
similar estimate shows that the density of electric force, ρeE is negligible to
the Lorentz force density, j×B. Finally note that the electric energy density is
negligible to the magnetic energy density, their ratio being (ε0E2)/(B2/μ0) ≈
V 2/c2. As a result the electric charge density has disappeared from all but
the Poisson’s equation, ε0 divE = ρe. The latter is then of no use in MHD,
unless one is tempted, just for the sake of it, to calculate the charge density.

11 Synthesis of Subrelativistic MHD Equations

The variables of subrelativistic MHD are then the mass density ρ, the fluid
velocity, v, the temperature T and the electric and magnetic fields, E and B.
These variables obey the system of the three conservation equations of MHD
coupled to Maxwell’s equations (save the unuseful Poisson equation). Auxil-
iary quantities appear in these equations, like pressure and internal energy
density, given as a functions of ρ and T by equations of state, and microscopic
fluxes. For example the heat flux q, the conduction current, j or the micro-
scopic momentum flux, i.e. the viscous stress tensor σ. These fluxes are given
by transport laws as a function of MHD variables and their gradients. The
transport coefficients which enter these relations are the coefficient of ther-
mal conductibility χ, the electric conductibility σe, and the dynamic viscosity
coefficient η. The kinetic theory of plasmas near thermodynamic equilibrium
allowed to calculate them, once and for all, as functions of ρ and T . The
gravitational potential G, the gravity field g, the forces other than those ex-
plicitly written in the momentum equation and the volumic heating rates
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others than those explicitly written in the energy equation, if present, must
be calculated by independent complementary theories. For example newto-
nian theory of gravity if the system is self-gravitating or radiative transfer
theory if momentum and energy are exchanged with the photon field. The
three conservation equations of MHD are:

∂ρ

∂t
+ div(ρv) = 0 (63)

ρ

(
∂v

∂t
+ (v · ∇)v

)
= ρg − ∇P + divσ + j × B + fother (64)

∂

∂t

(
U +

1
2
ρv2 + ρG+

B2

2μ0

)

+div
(

1
2
ρv2v + (U + P )v + q − v · σ + ρGv +

E × B

μ0

)
= Hother+v ·fother

(65)
The three useful Maxwell equations, simplified for sub-relativistic situation,
are:

divB = 0 (66)

rotE = −∂B/∂t (67)

rotB = μ0j (68)

Equations of state give pressure and internal energy density:

P = P (ρ, T ) U = U(ρ, T ) (69)

Transport laws give the microscopic fluxes of heat, charge and momentum
as:

q = −χ(ρ, T )∇T (70)

j = σe(ρ, T )(E + v × B) (71)

σij = η(ρ, T )
(

∇ivj + ∇jvi − 2
3
δijdivv

)
(72)

12 Magnetic Pressure and Tension

The Lorentz force is sometimes presented as being the sum of the gradient
of a magnetic pressure and of a magnetic tension force, which is justified as
follows. The Lorentz force density can be expressed in terms of the magnetic
field alone as:

j × B =
1
μ0

rotB × B (73)
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By vector calculus identities, this is transformed into:

1
μ0

rotB × B = −∇ B2

2μ0
+

1
μ0

(B · ∇) B (74)

The first of these two terms is the gradient of some pressure, the magnetic
pressure, while the second is the so-called magnetic tension. So written, how-
ever, the basic fact that the total Lorentz force is perpendicular to the mag-
netic field is no more apparent. We can work out a somewhat more sophis-
ticated expression by writing the magnetic field as B = Bt where B is its
modulus and t is a unit vector tangent to the field line. Then,

(B · ∇) B = Bt · ∇ (Bt) = t

(
(t · ∇)(

B2

2
)
)

+B2 ((t · ∇)t) (75)

Using Frenet formulae for curvature and torsion of curves,

(t · ∇)t ≡ dt

ds
=

N

Rc
(76)

where N is the unit vector in the direction of the principal normal to the
field line and Rc is its radius of curvature. Gathering these results,

j × B = −
(

∇ B2

2μ0
− t(t · ∇)

B2

2μ0

)
+
(
B2

μ0

)
N

Rc
=

−
(
δ − tt

)
· ∇ B2

2μ0
+
(
B2

μ0

)
N

Rc
(77)

The first term on the right hand side is again the gradient of the magnetic
pressure, from which the projection along the field line has however been
substracted. This substraction reduces it to its part perpendicular to the
field line. Let us name it the “perpendicular” gradient of magnetic pressure.
The second term, also perpendicular to B, grows larger when the radius of
curvature of the field line becomes smaller. It is this term which is properly
the “magnetic tension” force. This separation of the Lorentz force into two
parts should not obscure the fact that they are always associated. It would
be incorrect for example to estimate the magnitude of magnetic forces on
the basis of magnetic pressure alone: if the magnetic field is potential (zero
electric current density, or equivalently rotB = 0) the net force is zero, the
gradient of magnetic pressure being in this case exactly compensated by
magnetic tension.

13 MHD Self-consistency

It is interesting to observe how MHD variables are coupled. An MHD system
is a motor which produces its own electricity and to some extent its own
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magnetic field. Indeed the magnetic field and the electric current (which, to
within an insignificant factor, is just the rotational of the former) interact
(couple) to produce the Lorentz force j ×B. This, together with other forces
like gas pressure gradients, determine the fluid motion, v. This is the motor
effect. Now, the fluid motion couple to the magnetic field to produce the elec-
tromotive field v × B, which, by Ohm’s law, contributes to the generation
of an electric current circulating in the plasma and hence to the associated
magnetic field. This is the “electro-motive”, or dynamo, effect. This coupling
between the hydrodynamic quantities and the magnetic field may be tight and
complex. The situation simplifies when the Lorentz force has but a negligible
influence on the plasma motion, which happens when |j × B| � |∇P |. As-
suming that the gradient scale of pressure and magnetic field are comparable,
this reduces to the condition that the plasma “β parameter”, the ratio of gas
to magnetic pressure, be large. An opposite limit is when the magnetic forces
potentially dominate all other forces. They dominate over gas pressure forces
if β � 1, an inequality which can also be written as (P/ρ) � (B2/(μ0ρ),
comparing the square of the sound speed c2s = γP/ρ to B2/(μ0ρ). Magnetic
forces dominate over inertia forces when |ρ(v · ∇)v| � |j × B| or equiva-
lently when v2 is much less than B2/(μ0ρ). The latter quantity is the square
of a characteristic velocity which appears ubiquitously in MHD, the Alfven
velocity cA:

c2A =
B2

μ0ρ
(78)

So, when |v| � cA, inertia forces are negligible to the Lorentz forces, and
when cs � cA, the gas pressure forces are negligible to the Lorentz forces.
When both inequalities are satified the dominant term in the equation of mo-
tion becomes the j ×B force alone. This equation cannot be satisfied, unless
this vector product vanishes. This conclusion is obtained when neglecting all
little pressure and inertia terms, i.e. it is the solution correct to zeroth order
in (cs/cA) and (v/cA). A magnetic structure such that everywhere in some
region j × B = 0 is said to be “force free” in this region, this meaning “free
of Lorentz forces”.

14 Equation of Evolution of the Magnetic Field

14.1 Field Evolution

Using Faraday’s and Ampere’s equations in conjunction with Ohm’s law we
obtain the time variation of the magnetic field:

∂B

∂t
= rot(v × B) − rot

(
1

μ0σe
rotB

)
(79)
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Often the magnetic diffusivity ηm = (μ0σe)−1 is treated as constant in space.
In this case the field evolution equation reduces to:

∂B

∂t
= rot(v × B) + ηmΔB (80)

The justification for accepting this simplification is that often, as we shall
see, the second term is either negligible or significant in restricted regions of
space only. So it does not matter very much if the variations in space of ηm is
carefully taken care of or not, the phenomena associated with this dissipative
effect remaining qualitatively the same.

14.2 The Kinematic and Dynamic Dynamo Problems

At first sight the field evolution equation (80) looks linear in B. However, it
should be borne in mind that the velocity field v depends implicitly on B
because the Lorentz force takes part in determining the motion. The linearity
is then only apparent but not real, unless it happens that the motion is in
fact only weakly dependent on these forces, i.e. β � 1. In this case the dy-
namo problem, which consists in finding how, starting from some initial very
small seed, the magnetic field is amplified to finite amplitude by motions of
the conducting fluid, reduces to linearity. A plasma flow, often a stationary
one, would then be calculated or assumed and the associated solutions of the
field evolution equation (80) would be analyzed in eigenmodes of its right
hand side. There is dynamo action if one of these modes is associated with
an eigenvalue that causes temporal growth. This is the “kinematic”, or lin-
ear, dynamo problem. No reaction of the Lorentz forces against the motion is
taken into account at this stage. Because dynamo action may be associated
with turbulent flows, an interesting variant of the kinematic dynamo problem
consists in treating the velocity field as a random vector function of known
statistical properties and try and calculate whether there is field growth, on
which scales and which are the statistical properties of this field. However,
since the solutions which show dynamo action have exponential field growth,
the reaction of Lorentz forces must eventually be taken into account to find
the saturation state, if any, or the further development in time of the motion,
which may be oscillating or chaotic. This defines the dynamic, or non-linear,
dynamo problem. Obviously, only the electromotive term, rot(v × B) can
cause dynamo action because the other term, which pictures Joule dissipa-
tion, gives rise to a linear diffusion equation unable of any instability.

One may wonder why Joule dissipation gives rise to diffusive effects, weak-
ening field gradients as described by the diffusion equation, rather than simply
weakening the electric currents initially present in the system. This in fact
is due to the combined effect of electrical resistivity and Lenz’s law. When,
because of resistivity, the electric current weakens somewhere, the magnetic
field which it generates also weakens, which causes an induced electric field to
appear (Faraday law). This field drives Lenz’s currents even at places where
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there might have previously been none. So, electric currents weaken where
strong but increase where weak. The result of these combined resistive and
inductive effects is a diffusion of the electric currents: this can be clearly seen
by exerting the rot operator on the field evolution equation in the absence of
electromotive term, which yields a diffusion equation for the electric current
density.

14.3 The Magnetic Reynolds Number
and the Perfect MHD Limit

When both the electromotive and dissipative terms are present in the field
evolution equation, which one dominates? Let L be a characteristic scale of
the magnetic field gradients. The ratio of these terms is approximately

|rot(v × B)|/|ηmΔB| ≈ (vB/L)/(ηmB/L
2) = vL/ηm (81)

The dimensionless quantity

Rm = vL/ηm (82)

is the magnetic Reynolds number. Because of the large sizes of astrophysical
objects and of the good electric conductibility of gaseous plasmas, the mag-
netic Reynolds number of MHD flows in such objects is usually very large. It
is of order 1014 in the solar corona, for a temperature of 106 K, L = 1R� and
v = 100 km/s. One can then think of considering the limit of infinite Rm. We
discuss below what could be lost so doing. The limit in which plasma resis-
tivity and viscosity (also a dissipative effect) are neglected is called perfect
MHD. In this limit the field evolves under the electromotive term alone, as
described by the “perfect MHD induction equation”:

∂B

∂t
= rot(v × B) (83)

In this limit the electrical resistivity σ−1
e is regarded as strictly zero, as is

also j/σe, and Ohm’s law simplifies to:

E + v × B = 0 (84)

from which equation (83) follows by taking its rotational. Equation (84) phys-
ically means that the electric field vanishes in the fluid instantaneous frame of
rest: the very good plasma conductor finds at any time a state of electrostatic
equilibrium in its own rest frame.

15 The Flux and Field Freezing Theorems

In the perfect MHD limit the plasma behaves like a super-conductor, not
in the quantum-physical sense of this term, but in its electric sense of ab-
solute zero resistivity. The field evolution then has a number of interesting
properties.
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(a) The flux through any circuit moving with the fluid remains constant in
time.
(b) Fluid elements connected by a field line at some time remain so later on.
These results are known as “flux freezing” or “field freezing” theorems, a
term which refers to the fact that matter and field accompany eachother in
the motion. Field lines appear as “frozen- in” in the plasma (or conversely,
the plasma appears as “frozen-in” onto field lines) Let us prove the first of
these two theorems.

M 2

M 1

dS1

dS
2

C 2

C  1

Σ

v  dt

Fig. 1. A circuit C1 moving with the fluid becomes the circuit C2 a time dt later.
The surface made of the union of the two surfaces enclosed by C1 and C2 and the
lateral surface Σ made of fluid displacements from one to the other is a closed
surface, S. Normal elements oriented outwards to S are shown.

15.1 Proof of Perfect MHD Flux Conservation
Following the Motion

Consider at time t1 a circuit C1, each point of which, M1 say, accompanies
the local fluid in its motion. At time t2 = t1 + dt, the point M1 has reached
a position M2 given by

OM2 = OM1 + v(M1, t1) dt = OM1 + dM1 (85)

The locus of all points M2 defines the circuit C2, displaced from C1 by the
plasma motion. Note that in this expresssion we need not, to first order
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in dt, distinguish between v(M1, t1)dt and v(M2, t2)dt henceforth noted as
v(M)dt. Let S be the closed surface consisting of a surface S(C1) spanning
C1, another surface S(C2) spanning C2 and the surface Σ generated by the
set of all vectors v(M)dt for all M ’s on C1, joining C1 to C2 (Fig. 1).

The magnetic flux at time t2 through S is zero:∫
S

B(P, t2) · dSout = 0 (86)

In this integral the surface element dSout is oriented outwards with respect
to the volume enclosed by S. This surface integral consists of three parts:∫

S

B(P, t2) · dSout =
∫

S(C1)
B(P, t2) · dSout

+
∫

S(C2)
B(P, t2) · dSout +

∫
Σ

B(P, t2) · dSout (87)

The second term on the right hand side is Φ2, the flux at time t2 through C2.
The first term is not the flux Φ1 at time t1 through C1 for two reasons. One
is that the value of B involved in it is taken at time t2. The other is that
the surface element dSout is oriented on the surface S(C1) opposite (with
respect to a common circulation sense on C1 and C2) to what it is on S(C2).
Correct to first order in dt we can write:

B(t2) = B(t1) +
∂B

∂t
dt = B(t1) + rot(v × B)dt (88)

obtaining from (86) and (87)

0 = Φ2+
∫

S(C1)
B(P, t1)·dSout+dt

∫
S(C1)

rot(v×B)·dSout+
∫

Σ

B(P, t2)·dSout

(89)
Because of the different orientation of the normal on S(C2) and S(C1)

the second term on the right hand side is −Φ1. The other two are of order
dt, the last one because the surface Σ between C1 and C2 is generated by
infinitesimal vectors v dt. Let dl be the line element in the vicinity of point
M on C1, oriented in the direct sense to the direction of the normal vector
defining the flux Φ1. The outgoing surface element on Σ can be written as

dSout = dl × v(M)dt (90)

Neglecting terms quadratic in dt we then obtain

Φ1 − Φ2 = dt

∫
S(C1)

rot(v × B) · dSout + dt

∫
C1

B(M) · (dl × v(M)) (91)

By Stokes theorem, the surface integral can be transformed into a line integral
on C1. Paying due attention to the fact that the outwards normal on S(C1)
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is opposite to the sense with respect to which flux Φ1 is defined, we obtain:

Φ1 − Φ2 = −dt
∫

C1

(v(M) × B(M)) · dl + dt

∫
C1

B(M) · (dl × v(M)) (92)

The sum on the r.h.s. is zero, because the mixed products (v × B) · dl and
B · (dl × v) are equal. This then gives, as previously claimed, Φ2 = Φ1.

15.2 Proof of the Permanence of Magnetic Connection
in Perfect MHD Motions

Let us now prove the second theorem. Consider two fluid elememts which are,
at time t1, at points P1 and Q1, at an infinitesimal distance from eachother
on a common field line. The vector P1Q1 is then parallel to B(P1, t1), which
is expressed by

P1Q1 × B(P1, t1) = 0 (93)

At time t2 = t1 + dt, the first plasma element has moved to a point P2 and
the second to a point Q2. The theorem claims that P2Q2 × B(P2, t2) is also
zero (Fig. 2).

B  

P 1

Q
1

P  

Q

v  ( P   )  dt

v  ( Q   )  dt1

B   (  t    )2

1

 2

2

2

(  t   )1 1

F i e l d l i ne  at  t  1

Fig. 2. Two neighbouring fluid elements P1 and Q1 on a common field line at time
t1 are moved, dt seconds later, at P2 and Q2. Under perfect MHD conditions, they
still are on a common field line at that time. See text for a proof.

Correct to first order in dt,

OP2 = OP1 + v(P1, t1)dt (94)
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OQ2 = OQ1 + v(Q1, t1)dt (95)

The field at P2 at time t2 is given in terms of B(P1, t1) by

B(P2, t2) = (B(P2, t2)−B(P2, t1))+(B(P2, t1)−B(P1, t1))+B(P1, t1) (96)

Expanding to first order in dt and dP ≡ P1P2 = v(P1) dt:

B(P2, t2) = B(P1, t1) +
∂B

∂t
dt+ (dP · ∇)B (97)

A first order Taylor expansion of each component of B with respect to the
coordinates of point P gives:

B(P + dP ) = B(P ) + (dP · ∇)B (98)

The vector P2Q2 can be similarly expanded:

P2Q2 = P1Q1 + (v(Q1) − v(P1)) dt = P1Q1 + (P1Q1 · ∇)v(P ) (99)

Let us note for conciseness

K1 = P1Q1 K2 = P2Q2 B1 = B(P1, t1) B2 = B(P2, t2)
(100)

we get:

K2 × B2 = (K1 + (K1 · ∇)v(P ) dt) × (B1 + dt(v · ∇)B + dt rot(v × B))
(101)

and, correct to first order in dt:

K2×B2−K1×B1 =K1×(dt(v · ∇)B + dt rot(v × B))+(K1·∇)v(P )dt×B1

(102)
A vector calculus identity states that:

rot(v × B) = (divB) v − (divv) B + (B · ∇)v − (v · ∇)B (103)

whence:

K2×B2−K1×B1 = K1 dt×((v · ∇)B − (div v)B + (B · ∇)v − (v · ∇)B)

+dt ((K1 · ∇)v) × B (104)

Simplifying:

K2 ×B2 −K1 ×B1 = dt (K1 × ((B · ∇)v − (divv) B) + ((K1 · ∇)v) × B)
(105)

It is assumed that K1 and B1 are parallel. Let t be the unit vector along
their common direction and B1 and K1 be their moduli:

B1 = B1t K1 = K1t (106)

The difference K2 × B2 − K1 × B1 reduces to:

K2 × B2 − K1 × B1 = K1B1 dt (t × ((t · ∇)v − (divv) t) + ((t · ∇)v) × t)
(107)

The right hand side of equation (107) is zero, which is just what the theorem
claims.
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15.3 Consequences and Limits of the Flux Freezing Theorems

In perfect MHD flows, field lines accompany the fluid. One could say that
they are therefore materialized and are so to speak unbreakable because they
always link the same fluid elements. As a result their topology cannot change.
For example, fluids elements which are not initially on a common field line
cannot become linked by one later on, at least as long as the perfect MHD
properties apply. This general topological constraint restricts the perfect-
MHD motions, forbidding a lot of movements that would otherwise appear
to be perfectly conceivable. Conversely, the constraint that the field follows
the fluid motion, whatever its complexity, may create situations where the
magnetic structure becomes itself very complex, the rotational of the mag-
netic field, proportional to the electric current density, becoming non-zero
and of a very complex structure too. Consider for example the sun (Fig. 3),
which, as is known, does not rotate near its surface like a solid body, the
equatorial regions rotating faster. Suppose that initially the field lines run
just below the surface in meridian planes, and emerge at some northern and
southern latitudes. From the second magnetic line freezing theorem, they are
transported by the matter.

Assume, just for simplicity that the reaction of Lorentz forces against the
rotation motion can be neglected. Consider plasma elements which at the
initial time are on such a common, poloidal, field line. Because the rotation
of polar elements lags over that of equatorial ones, this field line does not
remain in a plane, but bulges azimuthally more and more as the motion
goes on. The field line tends to wrap around the sun, developing a growing
azimuthal field component of one sign in one hemisphere and of another
sign in the other. This component results from a system of poloidal electric
currents which are generated by the electromotive field of the differential
rotation motion. When field lines become very tightly wrapped azimuthally
it becomes no longer possible to neglect the reaction on the fluid motion of the
growing associated Lorentz force. Note also that motions in the sun’s upper
layers do not reduce to differential rotation, random complex motions of a
smaller scale being added to it, which makes the evolution of the magnetic
field correspondingly more complex.

Clearly, our estimate of the magnetic Reynolds number above rests on an
a-priori estimate of the scale L of field gradients, or, in more physical terms,
on an a-priori estimate of the electric current density which is estimated to
be of order |j| ≈ B/(μ0L). But the scale L can vary from point to point in
the plasma, and, at least in the vicinity of some particular points, it may
be much less than the global size of the plasma system involved in the con-
sidered motions. This would happen if the electric current circuit is, in some
parts at least, unusually strongly concentrated and flows through narrow sec-
tions. Making a realistic a-priori estimate of the actual value of the magnetic
Reynolds number is then a rather subtle and difficult undertaking. One should
check whether the plasma motion indeed does not spontaneously develop such
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Fig. 3. Evolution under flux-freezing conditions of a field line immersed in the
differentially rotating part of the solar interior.

regions of concentrated currents, a necessary condition for maintaining a per-
fect MHD regime everywhere. The physical effects of a local breakdown of
the perfect MHD approximation in restricted regions are described later in
this lecture and in the accompanying one by Clare Parnell. In the presence of
complex plasma motions, the electric current structure which develops may
conceivably also become itself very complex and develop regions of strong
concentration, with large magnetic field changes in intensity and direction
on rather small scales. Then the question arises as to whether the magnetic
Reynolds number calculated for realistic gradient scales remains indeed large,
and to define the properties of the regions of space where it does not. Prob-
ably, the solar corona, in regions where the magnetic field closes back on the
photosphere, is not in a state where perfect MHD is everywhere applicable,
due to the permanent growth of complexity induced by boundary fluid mo-
tions. This may be the driving reason for its heating, since the growth of
small scales promotes Joule dissipation.
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15.4 Conservation of Magnetic Helicity
in Perfect MHD Motions

The topological constraints which bear on perfect MHD motions result in
conservation of a number of integral quantities which contain some degree of
information on this topology, as for example the magnetic helicity of a closed
flux tube. Let us define this quantity, Hm, as the integral on the volume of
the tube, which may change in time, of the scalar product (A · B) where A
is a vector potential for B.

Hm(t) =
∫

tube(t)
(A · B) d3r (108)

The tube is the union of a bunch of elementary flux tubes. The volume
element, d3r, in one such elementary flux tube can be written as dldS where
dl is a the line element on the “central” field line of this tube, C, and dS
its cross section at the curvilinear absissa l along C, which may vary with l
(Fig. 4).

F l ux Tube

dV = dS dl

dl

The  c e nt r al  f ie l d l ine  

An e xt e r nal  f ie l d l ine

dS

Fig. 4. A closed elementary flux tube is represented. The volume element at some
position along its central line is dV = dS dl, dS being its section and dl the line
element along its central field line.

Then let us write that B = Bt where t is a unit vector tangent to C while
B is the modulus of the field. Then the integral that defines the magnetic
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helicity of an elementary flux tube can be written as:

Hm =
∫

C

(A · t) B dS(l) dl (109)

But B dS(l) is the magnetic flux dΦ⊥ through the elementary tube which is
independent of curvilinear abcissa along C, by the very definition of a flux
tube. Moreover (A · t) dl is the circulation element (A · dl) of A along C.
Hence

Hm = dΦ⊥
∫

C

A · dl (110)

The integral along circuit C can be transformed by Stokes flux/circulation
theorem in an integral on a surface S spanning C of the rotational of that
vector. Here, this results in∫

C

A · dl =
∫

S

rotA · dS =
∫

S

B · dS = Φ(C) (111)

where Φ(C) is the magnetic flux through C. In brief,

Hm = dΦ⊥ Φ(C) (112)

In a perfect MHD motion the line C moves conserving the flux Φ(C)
through any surface that it spans, and the tube itself evolves in such a way
that it conserves the flux dΦ⊥ through its section (first flux-freezing theorem).
As a result Hm is constant following the motion of an infinitesimal flux tube,
provided it closes on itself (Woltjer, 1958). The result extends to a flux tube
made of the union of such elementary tubes. Extensions of the concept of
magnetic helicity can be defined which apply to portions of such tubes limited
by crossing surfaces (Berger et Field, 1984). In the case of closed flux tubes,
the above expression makes it immediately apparent that the simple definition
of magnetic helicity given above is gauge-invariant. This question was pending
since vector potentials A are defined up to a gradient.

15.5 The Concept of Magnetic Reconnection

In which conditions do these perfect MHD constraints cease to apply? It is
not enough, in practice, that the magnetic Reynolds number be non-infinite
for dissipative effects to become an observable reality. If it is very large, the
gradient scale of the magnetic field being L, little deviation from perfect
MHD will be apparent until a time

τevol = μ0σeL
2 (113)

has elapsed, which, for L of order of the size of an astonomical object, is
extremely long indeed. The realistic exception to perfect MHD is when the
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plasma locally develops very small scalelengths of the magnetic field as com-
pared to the global scale of the system in which these MHD motions are
produced. But it can be said that such an exception is not exceptional at all.
This is because perfect MHD systems, by their own dynamics, often spon-
taneously develop such regions of strong field gradients. In these localized
regions perfect MHD breaks down and dissipative MHD motions develop lo-
cally, in an ambiant medium where nevertheless perfect MHD still remains
valid at large. The local dissipative motion has to somehow match to a general
flow which, at other places, retains perfect MHD character (Fig. 5).

L oc al i z e d di s s i pat i v e  r e gi on

F i e l d l i ne s  

Fig. 5. A simple representation of a reconnection event in the vicinity of some
celestial body. The atmosphere is assumed to expand in time to the right. The
magnetic structure expands as well, still satisfying, in the first three frames, the
topological constraints of perfect MHD. In the fourth frame, a region, indicated
by the arrow and the box, where the electric current is concentrated and electrical
resistivity influences the plasma motion on a short enough time scale, has appeared.
The field lines have been broken, and a reconnection event has started.

Locally, in the dissipative region, however the topological constraints of
perfect MHD may be violated. For example, matter can slip there accross
field lines. A consequence can be that fluid elements which were initially
not magnetically connected would become so after plasma elements to which
they were connected happened to flow through such a dissipative region.
The description of such motions, which are dissipative in restricted regions of
space but otherwise are perfect MHD, is the purpose of “reconnection theory”
described by Clare Parnell in this series of lecture.
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Part II: How Reliable Is MHD?

16 From a Microscopic
to a Macroscopic View of a Plasma

17 What a Plasma Really Is

A plasma is a conducting fluid, gaseous or sometimes liquid. Plasmas are met
most frequently in astrophysical or planetological environments. The dense
fluids inside stars, sometimes quantum-degenerate, are one example, as are
thermally partially ionized plasmas of stellar atmospheres, or gases which are
ionized by an external agent, such as the UV radiation of a nearby star in HII
nebulae or of the sun in the upper terrestrial ionosphere, or even the cosmic
rays in the molecular clouds of the interstellar medium. In the latter case, for
example, the ionized fraction would be very low, but such media, eventhough
they are poor conductors, still have large magnetic Reynolds numbers because
of their size. Given that diversity, one could question whether a conducting
fluid dynamic description is always appropriate.

18 What Happens
at the Microscopic Level in a Plasma?

A plasma is basically a collection of particles, some or all of them being
electrically charged. They are subject to a number of forces, external, that
is generated by sources external to the plasma itself, or internal, i.e. cre-
ated by the particles of the plasma itself. These forces may, for example, be
gravitational or electromagnetic, such as the Lorentz force:

F = q(E + v × B) (114)

Here v is the velocity of an individual particle, not the velocity of a piece
of fluid. Any pair of charged plasma particles interact by the Lorentz force
associated to the field that the other create. Let an index i label the different
particles. The electric charge of particle i is distributed in space like a Dirac
distribution:

ρe(r, t) = qi δ(r − ri(t)) (115)

and so is its electric current density:

j(r, t) = qivi(t) δ(r − ri(t)) (116)

The associated electric and magnetic forces decrease in proportion to the
inverse square of distance and are therefore long-ranged. Interaction forces
between neutral particles fall off much faster. As a result, any one given
charged particle usually interacts simultaneously with a large number of oth-
ers. Charged particles may suffer also other interactions, for example with
neutral ones or with photons.
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19 How to Describe the Dynamics of a Plasma?

What is the outcome of so many interactions among so many particles? Our
knowledge of the state of such a big system will always be necessarily incom-
plete, since it is impossible to keep track of the motion of all particles in a
system that may gather, typically, an Avogadro number of them, of order
1023, sometimes much more. A statistical description, the sophistication of
which may vary according to our needs, is unavoidable. We shall see that,
for times long compared to the characteristic time between collisions and for
systems large compared to the mean free path, this description reduces to
MHD. However, both the collision frequency and the mean free path vary
with the actual physical conditions. Sometimes the system, if its behaviour
has to be described on short enough time or spatial scales, is in fact far from
the conditions which allow an MHD description. A purely kinetic description
is then appropriate.

20 A Methodic Approach to Kinetic Plasma Theory

20.1 The Large Phase Space and the Large Distribution Function

We define a microstate of the plasma as one in which all the positions and
velocities of all plasma particles, of which there is a number N, are known with
infinite accuracy. To keep simple we disregard quantum indeterminacy and
assume that a classical description of the system is justified. The microstate
can be thought of as represented by a point M in a space Ω, the “space of
states” or “large space”, with 6N dimensions, since for each particle we need
to know the 3 components of its position vector and the 3 components of
its velocity or of its momentum. The microstate M cannot be known. We
therefore define the probability density F(M, t) to find it about some state
M of Ω.

20.2 Evolution of F and the Liouville Equation

When the system evolves in time, the set of states M that were at time t1 in a
vicinity dM1 of a state M1 move at time t2 in a vicinity dM2 of a point M2
of the large space. These microstates transport with them their probability
of being actually realized. Hence the probability of finding the microstate in
dM1 at time t1 is the same as that of finding it at time t2 in the element
dM2 corresponding to dM1 by the N-body motion. This is expressed by

F(M1, t1)dM1 = F(M2, t2)dM2 (117)

A theorem of hamiltonian mechanics, the Liouville theorem, states that the
volume element in the large space, more precisely the volume element of the
large space of canonical conjugate variables for the N particles, is constant
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following this element in its N-body motion. In the present case, these vari-
ables may be taken as the positions of the particles ri and their canonical
conjugate momenta P i = mivi − qiA(ri) where A(r) is a vector potential of
the magnetic field. The hamiltonian function of the system is:

H(ri,P i) =
N∑

i=1

(P i + qiA(ri))2

2mi
+

1
2

N∑
i=1

∑
j �=i

qiqj
4πε0|ri − rj | (118)

The Liouville theorem states that(
N∏

i=1

d3rid
3Pi

)
M1,t1

=

(
N∏

i=1

d3rid
3Pi

)
M2,t2

(119)

but, given the relation which exists between the canonical variable P i of
particle i and its position and momentum, we find, calculating the Jacobian
of the transformation, that

N∏
i=1

d3ri d
3Pi =

N∏
i=1

d3ri d
3pi =

N∏
i=1

m3
i d

3ri d
3vi (120)

All these different volume elements are then conserved following the N-body
motion as well. Let us sum up by saying that the Liouville theorem states
that

dM1 = dM2 (121)

so that the conservation of probability following the N-body motion reduces
to the statement that the large distribution function F is conserved following
this motion:

F(M1, t1) = F(M2, t2) (122)

Making the time derivative following the N-body motion explicit, the equa-
tion DF/Dt = 0 can be written as

∂F
∂t

+
∑
x,y,z

N∑
i=1

dxi

dt

∂F
∂xi

+
∑
x,y,z

N∑
i=1

dpx,i

dt

∂F
∂px,i

= 0 (123)

This is the Liouville equation, which can be written, defining ∂i as the gradi-
ent operator with respect to the i-th particle’s momentum pi and F i as the
force exerted on it, as

∂F
∂t

+
N∑

i=1

(vi · ∇i)F +
N∑

i=1

(F i · ∂i)F = 0 (124)

This beautiful result gives an exact evolution equation for the large distribu-
tion function, which is unfortunately useless because the function depends on
too large a number of variables. It is necessary to consider so-called reduced
distribution functions.
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20.3 Reduced Distribution Functions

The one-body reduced distribution function is defined by

f1(r1,p1, t) = N

∫
d2
∫
d3....

∫
dN F(1, 2, 3, ..., N, t) (125)

The notation 1 represents (r1,p1). The notation d1 represents d3r1d
3p1. We

assume for simplicity that all particles are of the same nature and in practice
indistinguishable from eachother. As a result F is a symmetric function of its
arguments 1, 2, ..N .., so that there is actually a unique one-body distribu-
tion function (for particles of the same species). The two-body distribution
function is defined as

f2(r1,p1, r2,p2, t) = N(N − 1)
∫
d3....

∫
dN F(1, 2, 3, ..., N, t) (126)

For the same symmetry reasons, there is a unique two-body distribution
function (among similar pairs of particles). Note that these functions are not
probability densities. Because of the factors N and N(N − 1), their integrals
are not normalized to unity, contrary to F . Their physical interpretation is
however simple: f1(r,p)d3rd3p is the average value of the number of particles
which, at time t, are in d3rd3p and f2(r,p, r′,p′)d3r d3p d3r′ d3p′ is the
average number of pairs of particles, one of which is in d3rd3p and the other
in d3r′d3p′. One can define similarly 3-body, 4-body, .. distribution functions.

20.4 BBGKY Hierarchy

The equations which describe the time evolution of reduced distribution func-
tions are obtained by acting on the Liouville equation with the same integra-
tion operator which defines them in terms of F . This produces for the one-
body distribution function f1(r1,p1, t) the evolution equation below, where
the time variable has been omitted from the arguments for brevity. F 1,ext(1)
is the external force exerted on a particle at r1 with momentum p1. The force
exerted by a particle 2 at r2 with momentum p2 on a particle 1 at r1 with
momentum p1 is noted as F 2/1(r2,p2, r1,p1). The equation for f1 is

∂f1(1)
∂t

+(v1 ·∇1)f1(1)+F 1,ext ·∂1f1(1)+
∫
d2 F 2/1 ·∂1f2(1, 2) = 0 (127)

It is not independent since it involves the two-body distribution function. It
must therefore be complemented by an equation which describes the evolution
of the function f2(1, 2) which is similarly obtained and can be written as:

∂f2(1, 2)
∂t

+ (v1 · ∇1 + v2 · ∇2)f2(1, 2) + (F 1,ext · ∂1 + F 2,ext · ∂2)f2(1, 2)

+F 2/1 · (∂2 −∂1)f2(1, 2)+
∫
d3 (F 3/1 ·∂1 +F 3/2 ·∂2)f3(1, 2, 3) = 0 (128)
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This equation is also not independent because it involves the three-body
distribution function. Proceeding that way further, a chain of equations is
generated, the so-called BBGKY hierarchy of equations. In full rigour, this
hierarchy would eventually bring us back to the Liouville equation.

20.5 Closure Assumptions and Kinetic Equations
for the One-Body Distribution Function

Here physics comes back, in the form of the art of finding adequate approx-
imations which allow to cut the BBGKY hierarchy at an early level. This
is indeeed possible in some important cases, the most classical one being
the case of a dilute gas, of density n, the particles of which interact by a
short-range force, of characteristic interaction distance a. Such a gas is def-
initely not a plasma! Under such conditions the integral on the states of
particle 3 in the equation for f2 is of order na3 � 1 as compared to other
terms. Neglecting it, the equation for f2 can be solved assuming that at time
t = −∞ f2(1, 2) = f1(1)f1(2) and that f1 evolves slowly as compared to f2.
The result for f2 in terms of f1 is substituted in the first equation of the
BBGKY hierarchy. An independent equation for f1 known as the Boltzmann
equation is thus obtained (Uelenbeck et Ford, 1961). This equation for rare,
short-range, binary collisions has been the first example ever obtained of a
kinetic equation for the one-body distribution function. Ludwig Boltzmann,
who first derived it, obtained it by more direct arguments (Huang, 1963),
namely by counting how many particles in the mean enter and leave the
different cells of the (r,p) space per second due to both collisions and reg-
ular forces. Boltzmann’s heuristic method can be generalized to a wealth of
different situations, like emission and absorption of photons by atoms, or pho-
ton scattering by atoms. Radiation transfer equations are obtained that way.
They are just kinetic equations for photons coupled to emitting, absorbing
and scattering particles. In the case of plasmas, however, one usually is in the
limit opposite to that of dilute neutral gases: each particle experiences at one
given time interaction with a great many others whereas in the Boltzmann
regime interactions are supposedly rare and binary.

21 Strongly and Weakly Coupled Plasmas

A measure of the average intensity of the interaction among particles is the
dimensionless number Γ defined as being the ratio of interaction energy at
average distance to the average kinetic energy. The average interparticular
distance d in a medium of density n is defined by

4πnd3/3 = 1 (129)

For two ions of charge Ze interacting electrostatically, we then have

Γ =
(

4π
3

) 1
3 Z2e2n

1
3

4πε0kBT
(130)
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According to temperature and density the number Γ can be large or small.
In tenuous hot plasmas it is generally small. Such plasmas are said to be
weakly coupled. Γ takes values larger than unity or even large values in very
dense “relatively” cold plasmas like those of the interiors of white dwarf stars
or planets. Such plasmas are said to be strongly coupled (see for example
Kalman, 1978). In weakly coupled plasmas, particles passing near eachother
at the average interparticular distance suffer only weak deviations, because
their kinetic energy is much in excess of the interaction energy. The fact
that a particle is present at some point r is then but weakly influenced by
the presence (or not) of a particle at a point r′ distant by an interparticular
distance or more: positional correlations are weak at such distances, as would
also be velocity correlations. Weak, but not absent. The existence of non-zero
position correlations manifests itself in the “screening effect” which can be
schematically described as follows. An ion tends to attract electrons and to
repell other ions. In some statistical sense, nearby electrons will make a little
detour in their unperturbed trajectories to pass closer to the ions, while ions
will detour to avoid coming close. There is then be a slight excess of negative
charges about any given ion. This negative charge is not made of a bunch
of electrons bound to the ion, but of a dynamic grouping in which each
individual electron resides only for a short time. To calculate this screening
effect simply, the following simple model is useful. The plasma is described as
the mixture of an electronic and an ionic fluid. The latter forms an uniform
unperturbable background, this being justified by the high ion inertia. In
the absence of any perturbation it is assumed that the electron fluid is also
uniform and that there is charge neutrality. Let the density of both types
of particles in this uniform state, assuming ions to be singly charged, be n0.
A test-ion, a proton, regarded as a positive point charge qe is introduced at
rest at position r = 0. It is asked how the electron fluid redistributes itself
about the test-ion, reaching a density distribution of spherical symmetry n(r)
under the influence of its own electrostatic field, of the electrostatic field of the
ion background and of perturbed electron fluid and of the electron pressure
force. For simplicity, the electron gas is regarded as an isothermal perfect
gas, of temperature T . The electric field in the plasma is given in terms of
the electronic density ne(r) by Poisson’s equation. Solving self-consistently
this equation and the equation of force equilibrium on the electronic fluid, it
is finally found that the electric potential Φ(r) about the test ion establishes
to:

Φ(r) =
qe

4πε0r
e−r/λD (131)

where λD, the Debye length, is given by:

λ2
D =

ε0kBT

n0q2e
(132)



Introduction to MHD 37

The density of the electrons is only weakly perturbed, because it is found
that

n(r) − n0

n0
=

1
nλ3

D

(
λD

4πr
e−r/λD

)
(133)

and, as shown below, our description makes sense only when nλ3
D � 1.

Comparing to what would be the potential about the test ion in vacuo, we
observe an exponential attenuation on the scale of the Debye length. This is
due to the gathering of electrons described above. Each individual electron
remains at Debye distance from the test ion only for a time τp = λD/vTe,
which is very short and can be expressed by:

τ−2
p ≡ ω2

p =
n0q

2
e

ε0me
(134)

The pulsation ωp is the (electronic) plasma pulsation. It makes sense to rep-
resent the electrons as a fluid only if there is a large number of them in
the potential structure, of size the Debye length, which they form. A plasma
where the number of electrons in the Debye sphere, ND, is large, that is in
which

ND ≡ 4
3
π n0λ

3
D � 1 (135)

is said to be a collective plasma, because many particles participate to build-
ing up the electric field at any given point. Collective plasmas are also wealy
coupled, because Γ and n0λ

3
D are related by

Γ =
1

48π2

1
(n0λ3

D)
2
3

(136)

To sum up, collective plasmas, where n0λ
3
D is large, are also weakly coupled

and particles in them are subject to weak positional correlations.

22 Vlassov Dynamics of Collective Plasmas

The weakness of correlations can be taken advantage of for cutting the
BBGKY hierarchy. Let us make the correlation part of the two-body dis-
tribution function explicit by writing it as

f2(1, 2) = f1(1)f1(2) + g2(1, 2) (137)

where g2 is the particle correlation function, which is small for collective
plasmas. If we simply neglect it we obtain an independent equation for the
one-body distribution function:

∂f1(1)
∂t

+ (v1 · ∇1)f1(1) + (F 1,ext + F 1,av) · ∂1f1(1) = 0 (138)
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where the average collective force exerted on particle 1, F 1,av, is defined at
this approximation as the average value of F 2/1 by the one-body distribution
function and not by the two-body distribution function, as should rigourously
be and as was the case in the original form of the first equation of the hier-
archy. Then, at the “Vlassov approximation”,

F 1,av =
∫
d3r2

∫
d3p2 F 2/1(r2,p2, r1,p1) f1(r2,p2) (139)

The Vlassov equation so obtained looks like a Liouville equation for a system
made of only one particle, but this is only apparent because the average
collective force on particle 1, F 1,av, depends on the unknown of the problem,
f1. Because of that the Vlasov equation is non-linear. It can be given many
different equivalent forms. For example if the interaction is only electrostatic,
F 1,av is but an electric force that can be written as F 1,av = q1Eav(r1).
By definition, this field is created by particles distributed according to the
function f1. The corresponding density of particles at a given point r is then

n(r) =
∫
d3p f1(r,p) (140)

and the associated charge density is

ρe(r) = qe

∫
d3p f1(r,p) (141)

The collective electric field is then given at the Vlassov approximation by
Poisson’s equation for particles distributed with that charge density:

ε0 divEav = qe

∫
d3p f1(r,p) (142)

If there is more than one type of charge carriers, labeled by an index α, with
charge qα, each can be described by its own one-body distribution function
f1,α and the collective Vlassov electric field then obeys the Poisson equation

ε0 divEav =
∑
α

qα

∫
d3p f1,α(r,p) (143)

and Vlassov equation for f1,α can be written as:

∂f1,α/∂t+ (v · ∇)f1,α + (F α,ext(r,p) + qαEav(r)) · ∂f1,α = 0 (144)

It is coupled to the distribution functions of all charged species because Eav

depends on them all.
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23 What Is Lost by Neglecting Correlations?

It can be shown that the Vlassov equation does not drive the plasma towards
thermodynamic equilibriuum. Actually it leaves constant the statistical en-
tropy of the system

Sstat = −
∫
f1(r,p) log(f1(r,p)) d3rd3p (145)

It is known, from Boltzmann’s famous H-theorem, that the approach to ther-
modynamic equilibrium implies that this quantity rises to its maximum. By
neglecting the correlations, the tendancy towards thermodynamic equilibrium
has been lost. This can be understood qualitatively. The Vlassov approxima-
tion substitutes to the real particles a distribution by which they are described
as if they were smoothly distributed in space with the density

∫
f1(r,p)d3p.

Therefore random deviations of the particle’s motions due to encounters with
individually identifiable particles have been completely erased from that de-
scription. The electric field is, at this approximation, entirely “regularized”,
or “smoothed out”. But the actual physical reality is still that particles are
moving point charges, though certainly in a vast number. The averaged-out
electric field described by the Vlassov equation is not the real electric field
which exists in the plasma, but only a smoothed-out approximation, though a
very good one. The real field differs from this average in that it exhibits fluc-
tuations about this mean due to the discrete character of charged particles.
These fluctuations are weak, rapidly varying, but exist and are superposed
on the Vlassov field as a noise, the “discrete particle noise” (Fig. 6).

Abc i s s a al ong a l i ne  t hr ough t he  pl as m a 

E av e r age

E r e al  
( w i t h di s c r e t e  par t i c l e s  noi s e  )

E    ( a c om pone nt  of  t he  e l e c t r i c  f i e l d)

( t he  V l as s ov  appr oxi m at i on)

Fig. 6. A schematic sketch of the variation of a component of the electric field along
a line through a plasma. The real electric field differs from its Vlassov average,
fluctuating about it because of the discrete nature of elementary electrical charges.
This “discrete particle noise” causes the real particle dynamics to deviate from the
Vlassov one, giving rise to “collisional” effects.
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Each fluctuation is the signature of a nearby point charge, the electric
signal of which is individualized on the background of the sum of the fields of
all the more distant others, which is well represented by the average Vlassov
field. These more nearby particles, the electric field of which is felt more per-
sonnally, are the ones which produce positional correlations among particles,
for they are the ones the field of which is individualized enough to influence,
though only weakly, the motion of the neighbouring particle which happen
to feel this fluctuation. The effect of these fluctuations constitutes the so
called “collisions”. The influence of these more individualized encounters will
be taken into account by regarding positional correlations as non-zero, thus
surpassing the Vlassov approximation. The technicalities are as follows. The
correlation function g2 is regarded as small but non-vanishing. The second
equation of the BBGKY hierarchy is linearized with respect to g2, and the
triple correlations, weaker than the second order ones, are neglected. One
then solves for g2 in terms of f1 (cf for example Ichimaru, 1973). This is
the difficult part. The result is inserted in the first equation of the BBGKY
hierarchy, and an independent equation for f1 (simply noted f herafter) is
obtained, which can be symbolically written in the following form:

∂f

∂t
+ (v · ∇)f + (F ext + F av) · ∂f = Coll(f) (146)

The term Coll(f) represents the effect of the “collisions”:

Coll(f) = −
∫
d2 F 2/1 · ∂1g2([f(1), f(2)]) (147)

As indicated by the notation, g2(1, 2) can be expressed at this approxima-
tion in terms of the one-body distribution function, so that the integral on
the right hand side is a functional of it. The collision operator, Coll(f) so
obtained defines an evolution equation for f known as the Lenard-Balescu
equation (Balescu 1975). The operator Coll(f) is in fact quite complex. It
features binary interactions where the colliding particles are screened by a
polarization cloud which depends on their velocity and on the value of the
one-particle distribution function at that time. In practice more rustic and
simple descriptions of the collisions are prefered, which it is not necessary
to develop here. It is important however to know that the Lenard Balescu
equation, as the simpler Fokker-Planck equation which is often substituted to
it, satisfy an H-theorem and cause the statistical entropy to increase, driving
the plasma to thermal equilibrium, if of course boundary conditions allow it.

24 Collisional Relaxation Time

When is it possible to use Vlassov equation and when is it needed to take
collisional effects into consideration? To answer this question let us calculate
how much time it takes collisions to substancially change the trajectory of
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some particle as compared to what it would have been without them. For
that, let us idealize collisions as two-body Coulomb interactions with the
nearest neighbour. Consider for example an electron-proton collision. It is a
matter of elementary mechanics to calculate the deflexion angle χ in such a
collision with impact parameter b and relative velocity v (Fig. 7).

The result is:

tg(
χ

2
) =

q2e
4πε0 b mv2 (148)

Each impact parameter is, for a given velocity associated with a certain de-
flection χ(b). The corresponding momentum change in the direction of initial
motion is

Δp‖ = (1 − cosχ) mv (149)

The number of collisions suffered per second by a particle with an impact
parameter between b and b+ db is:

dNcoll

dt
= 2π bdb nv (150)

and the average loss of momentum in the direction of initial motion is :

< −dp‖
dt

>=
∫ ∞

0
mv(1 − cosχ(b)) nv 2πbdb (151)

b
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D e f l e c t ion χ

Fig. 7. Illustration of the parameters of a Coulomb collision between an electron
and an ion.

However, in practice, collisions are not binary ones, but multiparticle ones.
This has the effect of screening the interaction at distances larger than the
Debye length, λD. To take this into account, we should cut the integral above
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at impact parameters equal or larger than it. Without such a cut, the inte-
gral on impact parameters would diverge, a consequence of the long range
properties of Coulomb interaction. Then:

< −dp‖
dt

>= nv

∫ λD

0
mv (1 − cosχ(b)) 2πbdb (152)

and after some elementary algebra using eq. (148):

< −dp‖/dt >
mv

= 4π n v
(

q2e
4πε0mv2

)2

ln

(
λD

q2e/(4πε0mv2)

)
(153)

This relation can be used to define a characteristic collisional deflection time,
which turns out to scale with relative velocity as v3. Faster particles suffer
lesser Coulomb friction. Averaging over a maxwellian velocity distribution,
we define a thermal collisional frequency for thermal electrons:

νcoll =
3ωp√

2
lnΛ

Λ
(154)

where the Coulomb parameter Λ is defined by

Λ = 12πnλ3
D (155)

and its neperian logarithm lnΛ is the so-called Coulomb logarithm. In a col-
lective plasma Λ is large. For example it is of order e20 in the solar corona. As
a result the collisional relaxation time ν−1

coll is much longer than the plasma
period. The collisional mean free path is � = vν−1

coll. Any phenomenon taking
place on a time scale shorter than ν−1

coll can be described in the framework
of the Vlassov collisionless theory. Any phenomenon taking place on a time
scale much longer than ν−1

coll or on a scale length much larger than � needs
a description accounting for collisional effects: in the framework of plasma
kinetic theory, the Lenard-Balescu, or perhaps the simpler Fokker-Planck
equation should be used. However, this may turn out to be rather tedious.
In some cases, the much simpler MHD approximation can be used instead.
Before leaving this chapter, the reader should be warned that there exist dif-
ferent types of collisional relaxation times, which can largely differ because
the electron to ion mass ratio me/mi is very small (Spitzer, 1962). As a result
collisions between electrons and ions are almost elastic and energy exchanges
between these two populations take place on a time scale longer than deflec-
tion effects. Moreover the decrease of the collision frequency with velocity
as 1/v3, a property of Coulomb collisions, has important consequences too.
Once accelerated to suprathermal velocities, it becomes rather difficult for
fast particles to slow down and thermalize. If suprathermal enough they re-
main as a collisionless population for rather long times, their behaviour being
described by Vlassov dynamics, in a thermal particle background that is itself
a lot more collisional.
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25 The Hydrodynamic Limit

The hydrodynamic limit is met when the scale length over which plasma
properties, such as for example the root mean square velocity of plasma par-
ticle about their mean value, becomes large as compared to the mean free
path �. and the time scale for these variations is large as compared to the col-
lisional time scale ν−1

coll. Then, in the vicinity of some point r in the plasma,
particles undergo one and their next collision under almost identical envi-
ronmental conditions. At some rough degree of approximation, one could say
that collisional relaxation takes place as if particles were in an homogeneous
and stationary medium with the local properties. The outcome of such an
interaction process is well known: after a few collision times the medium
reaches a state of thermodynamic equilibrium. The one particle distribution
function becomes very close to a maxwellian in the fluid’s local frame of rest.
In the laboratory frame, the fluid may have a global translation velocity and
its one particle distribution function is:

f(r,v, t) =
n(r, t)

(2πkBT (r, t) /m)
3
2
exp

(
−1

2
m(v − u(r, t))2

kBT (r, t)

)
(156)

In fact such an equilibrium is reached only in a local sense. It is approxi-
mately as described by equation (156) only in a small vicinity of point r and
for some short time lapse. This vicinity is nevertheless large compared to the
mean free path �, but small compared to the gradient scale L of macroscopic
plasma properties, such as density n, or temperature T or fluid velocity u.
Similarly the time scale over which the plasma is well described by this dis-
tribution is long compared to the collisional relaxation time scale, but short
as compared to the characteristic time scale for the evolution of macroscopic
quantities. The latter remain dependent on position r and time t, but vary
over scales longer than � and ν−1

coll resp. The problem therefore reduces in
this limit to calculating the three functions n(r, t), T (r, t) and u(r, t), which
is a vastly simpler undertaking than calculating a general distribution func-
tion f(v, r, t) for all values of v ! It will be seen that the evolution of these
functions is actually ruled by the equations of hydrodynamics or MHD. So
doing, we shall discover that the distribution function above is itself but a
first approximation to the real distribution function. We will have to calcu-
late a better approximation for accounting for the effects of inhomogeneity
which give rise to transport processes.

26 Transport Processes

As mentioned, the maxwellian shape of the distribution function is but a first
approximation, valid when the inhomogeneity of macroscopic quantities can
be totally ignored, in which case the successive collisions take place in strictly
identical environments. But this would be so only if the mean free path � were
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strictly zero. In reality � is only very small, in the sense that � � L, but not
zero. The ratio of the mean free path to the gradient scale, K = �/L, is the
Knudsen number. It is small but non-zero and can therefore be used as a
basis for a power series expansion of the distribution function. The zeroth
order term of this expansion should be the maxwellian with local values of
density, temperature and fluid velocity, for this is what we should get when
reducing � strictly to zero. The subsequent terms of the expansion constitute
a small departure from maxwellianess which keep track of the existence of
actual inhomogeneities in the medium. The first of these extra terms in the
expansion in fact constitute a sufficiently good approximation for our needs.
It can be calculated by linearization in terms of the small parameter K. This
departure from maxwellianess is important, as we shall see, because it carries
fluxes of physical quantities to which the isotropic maxwellian distribution
contributes for nothing. Hence the calculation of this first order term in the
Knudsen number is a must, for without it important physical processes would
not be accounted for.

26.1 Heat Conduction in a One-Dimensional Plasma

Let us illustrate how such an expansion can be done on the example of heat
conduction in a simplified, one-dimensional, plasma model. This plasma is
assumed to suffer no external nor collective forces and collisions are repre-
sented in the kinetic equation by a collision operator Coll. We seek for a
stationary state. The distribution function f(x, v) must be a solution of the
kinetic equation:

v
∂f

∂x
= Coll(f) (157)

In order of magnitude estimate, the left hand side term is of order O(vf/L)),
whereas the right hand side one is of order O(f/τcoll), τcoll being the colli-
sional relaxation time. Their ratio is of order of the Knudsen number since
vτcoll/L ≈ �/L. To zeroth order in K, the equation then reduces to

Coll(f) = 0 (158)

the solution of which is a maxwellian distribution since this equation expresses
the fact that collisional relaxation has come to completion, and therefore
thermodynamic equilibrium has been reached, a property which results from
so-called H-theorems. Disregarding for simplicity a possible fluid motion, the
one-dimensional equilibrium distribution function is:

f(x, v) = fM (x, v) =
n(x)

(2πkBT (x)/m)
1
2
exp

(
−1

2
mv2

kBT

)
(159)

Let us now proceed to the next term in the K expansion by writing the real
distribution function f as

f(x, v) = fM (x, v) + Kφ(x, v) (160)
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We calculate φ by perturbation, linearizing the kinetic equation with respect
to K:

v
∂

∂x
(fM + Kφ) = Coll (fM + Kφ) (161)

Since Coll(fM ) vanishes, Coll(fM + Kφ) must be the result of some linear
operator acting on Kφ alone. Let us assume that it can be written as:

Coll (fM + Kφ) = −νKφ (162)

where ν is some frequency, of order of the collision frequency, that might
depend on x and v. We assume for the sake of a simple illustration of the
method that it is a constant. The minus sign on the r.h.s. of equation (162)
indicates that, in the absence of inhomogeneities, the temporal variations of
f would result in a damping of departures from thermodynamic equilibrium
distribution function. Let ν−1 = τ and let us un-dimensionalyze the variables
by scaling x to L, the characteristic gradient scale, and v to a “thermal”
velocity vT . The dimensionless particle velocity w and dimensionless position
ξ are:

w =
v

vT
ξ =

x

L
(163)

and the kinetic equation becomes(τvT

L

)
w

∂

∂ξ
(fM + Kφ) = −Kφ (164)

Note that (τvT /L) is the Knudsen number. To first order in it, the kinetic
equation reduces to

−w ∂fM

∂ξ
= φ (165)

which is solved for the first order correction Kφ to fM . Restauring dimen-
sional variables, this gives:

Kφ = −
(τvT

L

)
w
∂fM

∂ξ
= −τ v ∂fM

∂x
(166)

It is a simple matter to calculate ∂fM/∂x:

∂logfM

∂x
=

1
fM

∂fM

∂x
=
∂logn

∂x
− 1

2
∂logT

∂x
+

1
2
mv2

kBT

1
T

∂T

∂x
(167)

If the medium is a perfect gas in pressure equilibrium, ∂logn/∂x+∂logT/∂x =
0. Eliminating the density we find

∂logfM

∂x
=

1
2
T
∂T

∂x

(
mv2

kBT
− 3

)
(168)
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whence:

Kφ = −τ
2

(
1
T

∂T

∂x

)
v

(
mv2

kBT
− 3

)
fM = −τ

2

(
1
T

∂T

∂x

)
n√
2π

w(w2 − 3)e−w2/2

(169)
This function is represented on Fig. 8 for positive dT/dx together with its
sum with fM = (n/vT

√
2π)exp(−w2/2).
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Fig. 8. The distribution function of particles in the presence of a weak temper-
ature gradient. The distribution function is distorted with respect to a perfectly
maxwellian shape. The distorsion is responsible for heat conduction, supporting an
energy flux opposite to the temperature gradient.

The distribution function which results from this addition of an even
and an odd function of v is asymetrical, or “skewed”. This asymmetry, as
shown below, is the cause of heat conduction. This result can be qualitatively
described as follows. At point x some particles travel to the right and some
other travel to the left. The former had their last collision to the left of x,
where they have been almost thermalized with a medium that is slightly
cooler than at x. As a result these particles are slightly under-energetic in
terms of the temperature at x. And conversely for those particles that travel
to the left. The heat flux q which is carried by the distribution function (160)
is

q(x) =
∫ +∞

−∞
(
1
2
mv2)vf(x, v)dv =

∫ +∞

−∞

1
2
mv3fM (x, v)dv+

∫ +∞

−∞

1
2
mv3Kφdv

(170)
The contribution brought to this integral by fM is zero for parity reasons.
Only the first order term, the distorsion to the maxwellian distribution, makes



Introduction to MHD 47

a contribution to the heat flux, namely, from equation (169):

q =
1
2
mv4

T

(
−τ

2
1
T

∂T

∂x

)
n(x)

∫ +∞

−∞
w4(w2 − 3)

e− w2
2√

2π
dw (171)

The integral which appears in this expression has a certain, unimportant,
numerical value, call it I. We then have obtained the heat flux in the form
of a Fourier law:

q = −χ dT

dx
(172)

Note that q scales proportional to the Knudsen number, since

K ≈ τvT

L
≈ τvT

(
1
T

dT

dx

)
(173)

and
q ≈ −1

4
KI nmv3

T (174)

Since K is supposedly small, this theory describes heat transport correctly
only when

q � qsat ≈ nmv3
T (175)

If the heat flux in a plasma were to approach this limit, the distorsion of the
actual distribution function with respect to the maxwellian would cease to
be small and could not be calculated perturbatively.

26.2 Negative Proportionality of Flux to Gradient

More generally, a gradient of any macroscopic quantity has, in the hydro-
dynamic regime, a microscopic flux associated to it which is caused by the
associated distorsion of the actual distribution function with respect to the
local thermodynamical equilibrium one. This flux is negatively proportional
to the gradient of the macroscopic quantity transported. One form of such a
relation is Fourier’s law of heat conduction,

q = −χ∇T (176)

and another is Fick’s law of transport by diffusion of a minor species, which
expresses the diffusion flux F as:

F = −D∇n (177)

26.3 Anisotropic Transport

In an anisotropic medium, for example one which is strongly enough mag-
netized for the collision frequency of some particles to be smaller than their
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gyro-frequencies, the transport coefficients, like χ, D or the electric conduc-
tivity σe may become tensorial. Specifically, thermal conduction in a plasma
is mainly caused by electron transport. In the presence of a magnetic field
it becomes strongly anisotropic when their mean free path becomes longer
than their gyroradius, because between two successive collisions electrons
cannot move farther away cross-fields than a gyroradius, an usually very
small distance, whereas they remain free to move any distance along the
magnetic field lines. As a result, the heat conductivity is large along field
lines but smaller perpendicular to them. The thermal conductivity of a non-
magnetized plasma, or its field-aligned part (which gives the field-aligned
heat flux as a response to the field-aligned temperature gradient), is given,
with T in degrees Kelvin, by:

χ = 1.85 10−10 T
5
2

lnΛ
J m−1 s−1 (178)

The electrical conductivity, which gives the electric charge flux in response to
a gradient of electric potential is, in a plasma where the collision frequency
of electrons exceeds their gyrofrequency ωBe = −qeB/me:

σe = 1.6 10−2 T
3
2

lnΛ
Mho m−1 (179)

By contrast, it becomes very anisotropic when the electron collision frequency
is much less than their gyrofrequency. Let us introduce the vector notation
ωBe = −qeB/me. The anisotropic electric conduction can easily be calcu-
lated adopting a simplified model of plasma dynamics. Assume the ionization
to be complete and the ions to be protons. Electrons and protons are treated
as two independent fluids coupled by a friction force (Cowling, 1957). The
equation of motion of electrons, of charge qe, massme, density ne and velocity
in the laboratory frame ve can be written, neglecting gravity:

neme(
∂ve

∂t
+(ve ·∇)ve) = −∇pe + qe(E +ve ×B)−nemeν(vi −ve) (180)

With similar notations, the equation for ions motion is :

nimi(
∂vi

∂t
+ (vi · ∇)vi) = −∇pi + qi(E + vi × B) − nemeν(ve − vi) (181)

The friction on ions must, by action-reaction theorem, be opposite to that
on electrons, which is taken into account in equation (181). Let us introduce
the differential velocity between electrons and ions, w:

ve = vi + w (182)

The electric current density j is

j = niqivi + neqeve = neqe(ve − vi) = neqew (183)
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The quasi-neutrality of the plasma has been used to write down this expres-
sion. Divide the electron motion equation by neme, that of ions by nimi and
substract, obtaining an equation for w:

∂w

∂t
+(((vi + w) · ∇)(vi + w))−(vi ·∇)vi = − ∇pe

neme
+

∇pi

nimi
+(

qe
me

− qi
mi

)E

+
qe
me

(vi + w) × B − qi
mi

vi × B − ν(1 +
me

mi
)w (184)

It simplifies in the limit of infinitely heavy ionsmi = ∞, and can be converted
into an equation for j multiplying by neqe, which can be first written as:(
∂

∂t
(neqew) − w

∂

∂t
(neqe)

)
+neqe(vi ·∇)w+neqe(w ·∇)vi+neqe(w ·∇)w =

− qe
me

∇pe +
neq

2
e

me
(E + vi × B) +

qe
me

j × B − νj (185)

From electron number conservation equation ∂ne/∂t+ div(neve) = 0:

∂j

∂t
+ w div(neqe(vi + w)) + neqe(vi · ∇)w + (j · ∇)vi + (j · ∇)w =

neq
2
e

me

(
E + vi × B − ∇pe

neqe

)
+

qe
me

j × B − νj (186)

We can add on the left hand side the term vidivj, since, for negligible dis-
placement currents, as here, divj = 0. Thus, rearranging notations slightly:

∂j

∂t
+w div(neqevi)+(neqevi ·∇)w+w divj +(j ·∇)w+vi divj +(j ·∇)vi

=
neq

2
e

me

(
E + vi × B − ∇pe

neqe

)
+

qe
me

j × B − νj (187)

The terms on the left hand side can be given an elegant tensor form. Actually,
analyzing components, it can be recognized that the following identity holds:

(a · ∇)b + b div(a) = div(ab)

whence

∂j

∂t
+ div

(
vij + jvi +

jj

neqe

)
+ νj + j × ωBe =

neq
2
e

me

(
E + vi × B − ∇pe

neqe

)
(188)

This equation gives the electric current in terms of electric and electro-motive
fields. It is a generalization of Ohm’s law. At this point no use has yet been
made of the particular circumstances which make the plasma almost MHD,
i.e. gradient scales larger than mean free paths and variation time scales
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longer than the collision time. In such circumstances, the quantity νj is likely
to be one of the dominant terms. Let us compare the other terms to it. Clearly
∂j/∂t is much less because the variation time scale is longer than the colli-
sion time. The ratio of the tensorial terms under the div operator are small
compared to νj because the ratio of these quantities is of order (jvi/L)/(νj),
with L the gradient scale, and (vi/ν)/L < (vTe/ν)/L = �/L = K. For very
collisional systems, ν should exceed ωBe, but this is often not so in reality. Fi-
nally the term qe∇pe/me can be compared to νj by noting that the pressure
is given, in order of magnitude, by the equation of motion of the fluid as a
whole. For a subalfvenic flow, ∇p ≈ |j ×B| and the ratio (qe∇pe/me)/(νj) is
almost equal to ωBe/ν, which may not be so small. For superalfvenic flow, the
estimate is even less favourable. We conclude nevertheless that for ωBe � ν
the electronic pressure term is negligible. In that case, the big equation (188)
for j reduces to the usual Ohm’s law of MHD:

j =
neq

2
e

meν
(E + vi × B) (189)

If on the other hand ωBe is not much less than ν, the electron pressure term
should be retained as an electromotive term and the term j × ωBe cannot
be neglected as compared to νj. We leave it to the reader to solve for j by
inverting the matrix N defined by:

N j = νj + j × ωBe (190)

As N itself, the inverse matrix is not diagonal, An anisotropic conductivity
appears, with so-called direct, Hall and Pedersen components defined by the
ratios (j‖/E‖), (j×/E⊥) and ( j⊥/E⊥).

26.4 Viscosity

The gradients of the components of the bulk fluid velocity, u, also create
transport effects. The quantitity associated to fluid velocity is momentum.
Its gradients cause distorsions of the actual distribution function with re-
spect to the maxwellian one which carry a momentum flux, which is just the
viscosity phenomenon. Figure 9 shows, in two dimensions, the general shape
of a distribution function distorted by a gradient in the y-direction of the
x-component of the bulk fluid velocity u. The microscopic flux of momentum
is the opposite of the viscous stress tensor, σ presented in Part I.

From the general fact that microscopic fluxes are proportional to the
gradients of the transported macroscopic quantity, one infers that the com-
ponents of σ should depend linearly on the gradients of the components of the
bulk velocity u(r, t). In a given rest frame, there should then exist viscosity
coefficients Aijkl such that (we use the dummy index rule here):

σij = Aijkl∇kul (191)
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Fig. 9. Isocontours in particle velocity space of the two-dimensional distribution
function at position x = 0, y = 0 in the presence of a weak gradient in the y-
direction of a bulk fluid velocity aligned to the x-direction. The bulk velocity profile
is represented in the left panel as a function of position in space (fixed x, varying y).
The distribution function is distorted with respect to a perfectly maxwellian shape.
The distorsion is responsible for viscosity, because it supports a flux of x-component
of momentum opposite to its gradient in the y-direction.

The Aijkl’s must however satisfy some relations. Indeed, if the medium has
isotropic properties, which is often the case for viscosity because it is mainly
due to ion contributions, for which the gyrofrequency may indeed be less than
the collision frequency, there should be symmetries due to invariance under
rotation of both the flux and the velocity field. For example Axyxy should
equal Ayzyz. There should also be no viscous stresses if the fluid rotates as a
solid body, with a velocity field Ω×r, whatever the axis Ω about which such
a rotation is to take place. Taking into account all the constraints so imposed,
it can be shown that for an isotropic medium the viscosity coefficients Aijkl

can be expressed in terms of two coefficients η and ζ only, so that the viscous
stress tensor can be written as:

σij = η

(
∇iuj + ∇jui − 2

3
δijdivu

)
+ ζ δijdivu (192)

We shall not expand here on the reason why the terms proportional to divu
have been split the way they appear in this expression, nor on the different
physical effects represented by each of them (some more details in Heyvaerts
1991). It turns out that the second coefficient of dynamical viscosity, or bulk
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viscosity coefficient, ζ, is usually negligible. The first coefficient of dynamical
viscosity, η, or shear viscosity coefficient, is, in an isotropic plasma, approxi-
mately given by

η ≈ 0.2 10−5 T
5
2

lnΛ
Kg m−1 s−1 (193)

27 From Kinetic Theory to Hydrodynamics

As indicated above, the great simplification of hydrodynamics as compared
to full kinetic theory is that the unknowns of hydrodynamics reduce to a
limited number of hydrodynamic fields, the density n(r, t), the fluid velocity
u(r, t) and the temperature T (r, t). In the small Knudsen number limit, in
which hydrodynamics is justified, the kinetic problem is almost completely
solved in that the distribution function is expressed as the sum of a main
part which is a thermodynamic equilibrium distribution and a small correc-
tion to it, Kφ which is entirely expressible in terms of the gradients of the
quantities that define the local thermodynamic equilibrium part. To obtain
evolution equations for these macroscopic quantities, it suffices to enter this
expression in the kinetic equation and to act on it with an integral operator
which singles out the desired macroscopic quantity. For example, integration
of the distribution function on velocities gives the density n(r, t), while mul-
tiplication by v followed by an integration gives nu(r, t). Acting with such
operators on the kinetic equation gives a hierarchy of equations expressing
∂n/∂t, ∂u/∂t, ∂T/∂t, etc.. This is a slightly tedious procedure, in which care
should be exerted to take properly into account the different species of parti-
cles. We shall not dwell into the details here (some more details in Heyvaerts
1991), but just illustrate the idea on the example of the density. Let f(r,p, t)
be the one particle distribution function where the variables are now position
and particle momentum. It satisfies the kinetic equation:

∂f

∂t
+ (v · ∇)f + (F · ∂)f = Coll(f) (194)

The particle density at r at time t is

n(r, t) =
∫
f(r,p, t)d3p (195)

Integrate the kinetic equation on momenta, taking into account the simplify-
ing fact that most often the i-component of the force F exerted on a particle
does not depend on the same-i component of its velocity. This is true of all
forces that do not depend on velocity and also of the Lorentz force. Integrat-
ing by parts with f approaching 0 when | r | and | p | approach infinity, we
obtain: ∫

∂f

∂t
d3p =

∂n

∂t
(196)
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(v · ∇)fd3p = div(nu) (197)∫

(F · ∂)fd3p = 0 (198)∫
Coll(f)d3p = ṅinel (199)

This last term represents the rate of creation of particles of the considered
species per unit volume brought about by inelastic collisions, in which parti-
cles of this species can be created or destroyed, such as chemical or nuclear
reactions, ionizations or recombinations, pair creations etc.. We so obtain a
conservation equation for the number of particles of this species:

∂na

∂t
+ div(naua) = ṅinel,a (200)

The mass density of the fluid as a whole, ρ, is defined in terms of the number
density of the different species a with particle mass ma and electric charge
qa as

ρ =
∑

a

nama (201)

while the fluid bulk velocity u is similarly defined in terms of those and of
the species bulk velocity by

ρu =
∑

a

namaua (202)

The equation for ρ is obtained from the species number conservation equa-
tions by the operation

∑
ama×. In non-relativistic dynamics the total mass

is conserved in any type of chemical or ionization reaction, so that∑
a

ma ṅinel,a = 0 (203)

We are then left with
∂ρ

∂t
+ div(ρu) = 0 (204)

which is just the mass conservation equation. The electric charge, another
conservative quantity, obeys a conservation equation which is obtained sim-
ilarly by the operation

∑
a qa×. Had we multiplied the kinetic equation of

each species by p before integrating on this variable, we would have obtained
a conservation equation for the momentum of that species, and, summing
on them, a conservation equation for the momentum of the fluid as a whole.
Pre-multiplying the kinetic equation by p2/2ma would have given a conserva-
tion equation for the kinetic energy (bulk and random) of each species, that
could then be globalized by summing on species. All MHD equations can
be recovered that way. They have been admittedly obtained in Part I more
straightforwardly, but at the expense of a somewhat a-prioristic introduction
of hydrodynamical concepts. A slightly more detailed presentation is to be
found in this series in Heyvaerts (1991).
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28 Couplings Between MHD
and Collisionless Phenomena

Again, MHD is valid for plasma motions the scale length of which is larger
than all particle’s mean free path and the time scale of which is longer than
the collisional relaxation time, whereas the Vlassov description applies in the
opposite situation. However, the mean free path and the collision frequency
depend on the energy of particles, and the gradient scales and evolution time
may vary with position and time. So, it is unfortunately not granted that
the two situations be mutually exclusive. We expand on these complications
below.

28.1 Possible Coexistence of Particles
in Hydrodynamic and in Collisionless Regimes

Different populations of particles may coexist in a plasma. For example, occa-
sionnally or permanently, a high energy population may coexist with a lower
energy population. These populations will have different collision frequencies
and mean free paths. It may happen that the hotter one be in a collisonless,
Vlassov, regime while, on similar time and spatial scales, the colder one be
in an hydrodynamical regime. Though usually less dense, the hotter compo-
nent could make a very significant contribution to the electric current or to
the heat flux, and could for this reason not be disregarded or treated as an
insignificant correction. Such situations are met in the terrestrial magneto-
sphere, in the interstellar medium, where a cosmic ray population contributes
very significantly to the pressure, and occasionnaly in the solar corona, near
particle acceleration sites of solar flares. These energetic electron populations
probably make the dominant contribution to the heat flux from the heated
region to the lower solar atmosphere in the form of beams of precipitating
particles, the distribution function of which is certainly far from maxwellian
and even far from the distorted shape which the theory of collisional transport
predicts when there is heat flux.

28.2 Runaway Electrons and Dreicer Field

A classic example of transition from collisionality to collisionless behaviour is
the phenomenon of runaway electrons, which appears when a plasma is in a
strong electric field (aligned to the magnetic field if the plasma is magnetized).
Let us model the runaway process simply by considering the motion of an
electron in an electric field E, collisional effects being represented by a velocity
dependent friction force, so that the dynamic equation for the electron can
be written as:

m
dv

dt
= qE −m ν(v) v (205)
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m and q being its mass and electric charge, and ν(v) the collisin frequency.
When v is less than the thermal velocity, it is almost constant, whereas when
v becomes larger it decreases as 1/v3. If any limit velociy can be reached at
all, it must be given by the equation

v ν(v) =
q

m
E (206)

The function v ν(v) increases as v for subthermal velocities, and decreases
as 1/v2 for suprathermal ones. It reaches a maximum for an almost thermal
velocity. If qE/m is less than this maximum value, there are two solutions, the
smallest one being first reached and stable. The limit velocity of the electron
then is

v ≈ qE/(mν(vT )) (207)

and the electric current density is approximately:

j = nqv =
nq2

mν(vT )
E (208)

One can read on this expression the value of the electrical conductivity. If
on the other hand the electric field is so intense that qE/m exceeds the
maximum value of the function vν(v), there is no limit velocity, and the
electron is indefinitely accelerated. This is because in a thermal collision time
an electron receives so much acceleration that it exceeds the thermal speed
and enters a regime in which it is less coupled by collision to the plasma. This
allows acceleration for a time longer than the thermal collision time, therefore
the electron picks up a supplement of kinetic energy, which makes it even less
collisionally coupled, and so on. The corresponding electric field value is the
runaway field, which has a value very close to the so called Dreicer field
ED. Precise definitions are given by Benz (1993). An estimate is obtained by
equating qE/m and the maximum value of v ν(v) which is close to vT ν(vT ):

ED ≈ mvT

qν(vT )
(209)

When the electric field approaches the Dreicer limit by lower values, the
electrons in the wings of the thermal distribution already start suffering the
runaway effect which affects most electrons when the runaway field is even-
tually reached.

28.3 Microinstabilities and Anomalous Transport Phenomena

When the distribution function of electrons or ions is shaped in a way which
differs strongly from the thermal distribution or when the bulk velocity of
one species with respect to another one exceeds some critical velocity, for ex-
ample a thermal one, it often happens that the plasma turns micro-unstable.
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Micro-instabilities consist in the unstable growth in the Vlassov regime of
electric or magnetic fluctuations in the plasma, usually of a frequency ex-
ceeding, sometimes by large factors, both the collision frequency and the ion
gyrofrequencies. The growth is due to the fact that their Landau or cyclotron
collisionless damping becomes negative. This introductory lecture is not the
place to describe in detail how microinstabilities are triggered but it must
be kept in mind that they may have most important effects on the global
plasma dynamics. The phase of growth and non linear saturation, if any, is
entirely described in the collisionless regime. Once developped, these fluctu-
ations may be felt by the plasma particles as random scatterers, the time
scale over which they affect particles velocities being much shorter than the
collision time scale. From a macroscopic point of view everything appears as
if in the region where these fluctuations are present the plasma had acquired
a much higher degree of collisionality than the one allowed to it by normal
Coulomb collisions in a quiet medium. This has a tremendous effect on trans-
port properties. Microinstabilities may be triggered for example if the current
density exceeds some threshold (see for example Heyvaerts 1981), the plasma
then becoming anomalously resistive because the electrons suffer “collisions”
on the fluctuations at a rate much larger than Coulomb collision frequency.
Else, the micro-instability may be triggered by the heat flux exceeding some
threshold value, the mean free path of the electrons being suddenly reduced
to a much smaller value by unstable fluctuations. This may reduce the field-
aligned thermal conductivity, but may also increase it perpendicular to field
lines, because the latter is limited by the fact that the electron’s excursions
perpendicular to the field is limited to no more than a gyroradius between
two successive collisions. In the presence of microinstabilities, the “collisions”
become a lot more “frequent”, and this component of the heat conductibility
may be increased as compared to the case of Coulomb collision transport.

28.4 Collisionless Shock Waves

Microinstabilities play a prominent role in the phenomenon known as “col-
lisionless shock waves” (Sagdeev 1960, 1966, Galeev 1976). In the hydrody-
namic regime a shock develops when for example a sound wave of finite and
not too small amplitude propagates. It is a classical exercise to show that in
one-dimensional propagation non linear effects drive the flow to progressive
gradient steepening that culminate in the formation of a velocity and density
discontinuity (see for example a pedagogical discussion of this in Zeldovitch
and Raizer (1967) or Heyvaerts (1991)). This phenomenon can be viewed
as an attempt by faster fluid in the trailing part of the wave to surpass the
slower fluid moving in front of it. This is however impossible in hydrodynamic
regime, because collisions severely forbid the propagation through one fluid
component of another much faster one. A double-peaked distribution function
could only possibly develop on a scale of one or a very few mean free paths,
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but is then thermalized away by collisions. The closer one can come to inter-
penetrating flows in the hydro regime is to be found in a quasi-discontinuity,
i.e. in a region where the hydrodynamic quantities change extremely rapidly
on a scale of a few mean free paths. This is an hydrodynamic, or collisional,
shock wave. Hydrodynamics is of course unable to accurately describe what
is going on in the few mean free paths that constitute the so called shock
front. In hydrodynamic, or MHD, theory, this region is treated as a true dis-
continuity. This may look odd, but in fact a precise description of what really
is going on in this very small region is not needed, because the preshock state
and the postshock state of the fluid are related by very general conservation
relations known as Rankine-Hugoniot relations (for a pedagogical presenta-
tion see Heyvaerts (1991) or Priest (1982)). In a tenuous plasma, Coulomb
collisions are much less efficient and the Coulomb mean free path may be
quite large. The invasion of a fast plasma stream into more slowly moving
plasma is then not so inconceivable and the interpenetration region may not
be so small. Regions where the distribution functions become double-peaked,
each peak corresponding to one component of the plasma, the fast stream or
the slow stream, or at least regions where the distribution function becomes
very different from a thermodynamical equilibrium one, may well exist. Sim-
ilar extreme situations may create very non-thermal electron distributions or
strong differential motions between ions and electrons. Then one should ques-
tion the microstability of such plasma states. When two plasma components
have large streaming velocity one with respect to the other, the development
of a micro-instability is likely, and its development may lead to a state of
anomalous “collisionless” friction between the two components. Ultimately a
state of recovered stability will be reached after the micro-turbulent episode,
possibly with distribution functions exhibiting much broader dispersion than
in the pre-turbulent state. The scale length on which this anomalous frictional
braking and heating develops may be much less than the Coulomb mean free
path, and is determined by the characteristic saturation scales of the mi-
croinstability. The thickness of this microturbulent region plays the role of a
shock front thickness because it may be small when viewed on the system’s
global scale. Actually it is the thickness of the transition region between the
upstream state, where the plasma streams had not yet interpenetrated, and
the downstream state where they have been brought to a common velocity
and to an higher temperature. Such a transition structure where the friction
between some plasma components is mediated by micro-instabilities is called
a collisionless shock wave. For example, the bow shock driven by earth in the
flow of the solar wind is of a collisionless nature.
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Magnetic Reconnection: Classical Aspects

Clare E Parnell
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Fife, KY16 9SS, SCOTLAND

Abstract. Magnetic reconnection is an important mechanism in astrophysics for
converting magnetic energy to both thermal energy and bulk acceleration of plasma
and also for changing the global topology of the magnetic field. For over 50 years
now solar theorists have investigated reconnection. This paper provides a basic re-
view of the classical aspects of reconnection in both one, two and three dimensions,
as well as, giving a potted history of reconnection theory in solar physics. Mag-
netic annihilation, Sweet-Parker reconnection and Petschek reconnection will all be
discussed as will spine and fan reconnection in three dimensions.

1 Introduction

One of the most important mechanisms in astrophysics is magnetic reconnec-
tion because it allows global changes in the topology of the magnetic field.
Such changes are, of course, associated with energy releases: reconnection
is an efficient means of converting magnetic energy to thermal energy, bulk
kinetic energy and accelerated particle. It can create large electric currents,
shock waves and filamentation.

Magnetic reconnection plays a major role in many areas of astrophysics
including:

• the interaction of the solar wind with the Earth’s magnetosphere,
• in the action of the Sun’s dynamo in generating the Sun’s magnetic field.
• in heating solar and stellar coronae,
• in solar flares and coronal mass ejections.
• in the acceleration of stellar and solar winds,
• in accretion disks

Clearly magnetic reconnection occurs in many solar and stellar events
and is therefore a key mechanism that, if fully understood, could help us
understand many astrophysical phenomena.

2 History of Solar Magnetic Reconnection

Over 50 years ago now Giovanelli [1] suggested that solar flares occurred near
magnetic neutral points. This observation led Cowling [2] to consider whether
solar flares could be due to ohmic heating. To investigate this idea he calcu-
lated that a current sheet just a few metres thick would be needed to explain
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the massive and very rapid energy releases from solar flares. Later that year,
however, Dungey [3] pointed out that a current sheet could be formed by an
instability near a neutral point and that magnetic fieldlines of force could be
broken and rejoined in the neighbourhood of a neutral point. This was the
first time reconnection was eluded to, however, it was 5 years later before
this process was called reconnection. In 1957, Sweet conceived an idea for
a simple model of magnetic reconnection where the inflow into and outflow
diffusion from a current sheet are balanced leading to a steady state with
constant current and with the help of Parker the scaling laws of such a model
were calculated [4,5]. Parker [6] went on to extend this model by including
compressibility and internal structure across the sheet. It was in this paper
that he coined the phrase ‘annihilation of magnetic field’ and discovered that
the mechanism of reconnection proposed was too slow by a factor of 100 to
explain the rapid energy releases from solar flares. This was a blow to the
solar physics community who wanted to believed that reconnection was the
answer to the heating of solar flares. Furthermore, Furth, Killeen and Rosen-
bluth [7] demonstrated that a current sheet was unstable to reconnection due
to the tearing mode instability, implying that long Sweet-Parker diffusion re-
gions were unlikely to exist. A year later Petschek [8] presented a mechanism
for fast reconnection in which energy was released not only by ohmic heating,
but also from pairs of shocks on both ends of the current sheet. Calm was
again restored to the solar physics community as they once more believed
they understood solar flares.

This feeling lasted for more than 20 years then Biskamp [9] published
a paper describing numerical experiments in which he had attempted to
reproduce Petschek reconnection and failed. He found no evidence of fast
reconnection at high magnetic Reynolds numbers and therefore announced
that fast reconnection could not occur in the solar corona. However, careful
scrutiny of Biskamps experiment shows that it was not exactly the same as
Petscheks model. Indeed, the boundary conditions imposed on his numerical
box were different and so a different solution is found [10]. This was later
demonstrated numerically by Priest and Lee [11]. Also Scholer [12] showed
that at high magnetic Reynolds numbers fast Petchek reconnection can oc-
cur when the appropriate boundary conditions are imposed and the central
current sheet possesses an anomalous resistivity.

Although work on 2D reconnection has continued since then both along
analytical and numerical lines many have turned to three-dimensional recon-
nection. Schindler et al. [13] and Hesse and Schindler [14] were amongst the
first and they attempted to address the problem of the definition of 3D re-
connection, which is not the same as in 2D. This argument still continues
today [15]. Lau and Finn [16], Priest and Demoulin [17] and Priest and Titov
[18] amongst others, have considered various models for reconnection in 3D
including ones for reconnection with and without neutral points.



Magnetic Reconnection: Classical Aspects 63

3 Review of MHD Equations

Before the classical models of reconnection are explained lets take a brief look
at the MHD equations so we understand a little better about where and how
reconnection can take place.

In the equations of magnetohydrodynamics (MHD) it is assumed that the
typical length scales are much greater than the particle collision mean free
path and that the typical velocities involved are much less than the speed
of light (i.e. nothing is moving relativistically). This means that Maxwells
equations and Ohm’s law can be written in the form

∇ × B = μ0j , (1)

∇ × E = −∂B
∂t

, (2)

E + v × B =
j
σ
, (3)

∇ · B = 0 , (4)

where the magnetic permeability, μ0 ≈ 1.26 × 10−6 Hm−1 and σ is the elec-
trical conductivity. The first two equations are Ampere’s law and Faraday’s
law, respectively, and the third equation is Ohm’s law.

Induction Equation

If the curl of Ohm’s law is taken then

∇ × E + ∇ × (v × B) = ∇ × j/σ .

Substituting in for E and j from (2) and (1) we find

−∂B
∂t

+ ∇ × (v × B) =
1
σμ0

(∇ × (∇ × B)) = η(∇(∇ · B) − ∇2B) ,

where 1/σμ0 = η is the magnetic diffusivity.
When rearranged this gives the Induction Equation,

∂B
∂t

= ∇ × (v × B) + η∇2B , (5)

which describes the evolution of the magnetic field.
Let us consider the ratio of the terms on the RHS of (5),

∇ × (v × B)
η∇2B

=
vB/l

ηB/l2
=
vl

η
= Rm ,
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where l and v are typical length and velocity scales, respectively. This ratio
is equal to the magnetic Reynolds number, Rm.

In the solar corona, l is typically 106 − 5 × 107 m and v is typically
102 − 105 ms−1 so with a magnetic diffusivity η of 1 m2s−1 the magnetic
Reynolds number becomes 108 − 5 × 1012. This means that typically in the
solar corona the magnetic Reynolds number is very large. What does this
imply about the magnetic field?

Rm >> 1

The limit Rm >> 1 is known as the perfectly conducting limit: this does not
mean that there is no current rather that the second term on the RHS of the
induction equation is negligible. Thus, in such a limit the induction equation
reduces to

∂B
∂t

= ∇ × (v × B) .

An important consequence of this is Alfven’s Theorem.

Alfvens Theorem

Consider any surface S bounded by a closed contour C moving with the
plasma at a local velocity v with a flux F crossing the surface.

C

S
vδt

δc

Fig. 1. A moving plasma element of surface S with a boundary C.

In time δt, the line element δc sweeps out an area vδt× δc, so

DF

Dt
= ∂F/∂t+ v · ∇F =

∫
S

∂B
∂t

· dS +
∮
C

B · v × dc . (6)

The rate of change of flux is equal to the changes in the magnetic field with
time, the 1st term on the RHS of (6), and due to changes caused by the
motion of the boundary, the 2nd term on the RHS of (6). This last term can
be rewritten using Green’s theorem as a surface integral,∮

C

B · v × dc = −
∮
C

v × B · dc = −
∫
S

∇ × (v × B) · dS ;
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thus the equation for the rate of change of flux becomes,

DF

Dt
=

∫
S

(
∂B
∂t

− ∇ × (v × B)
)

· dS = 0 ,

using the limit of the induction equation for high magnetic Reynolds number.
This implies that flux (F ) through surface (S) moving with the plasma is
constant. And since this holds for any arbitrary contour C it implies that the
magnetic field must move with the plasma, thus magnetic fieldlines are said
to be frozen-in to the plasma (Figure 2).

plasma
motion

Fig. 2. Magnetic flux conservation - if a curve C1 is distorted into C2 by plasma
motion, then the flux through C1 equals the flux through C2

That is to say plasma elements can only move along fieldlines and can not
cross from one fieldline to another (Figure 3).

plasma
motion

P1

P2

P1

P2

Fig. 3. Magnetic fieldline conservation - if plasma elements P1 and P2 lie on one
fieldline at time t1 then they will lie on the same fieldline at time t2

This approximation is valid for most solar MHD situations. In the corona
magnetic forces dominate so the plasma is pulled along by the magnetic
field. In the photosphere the inertia of plasma dominates and magnetic field
is dragged by plasma.
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The transport of the magnetic field by the fluid is known as magnetic ad-
vection and so the term ∇ × v × B in induction equation is known as the
advection term.

Rm << 1

A magnetic Reynolds number much less than 1 implies that length scales are
small. In such a situation the induction equation reduces to

∂B
∂t

= η∇2B .

This is in the form of a diffusion equation and represents the ability of the
magnetic field to move through the plasma (diffuse). Hence η is known as
the diffusion coefficient. When the diffusion term is dominant reconnection
may take place; thus this implies that small length scales are needed for
reconnection.

Small length scales can be found in many situations including: current
sheets; neutral points; due to tearing mode and coalescence instabilities; and
in propagating sheets in shock waves.

Diffusion Timescale

One of the key questions of interest is what is the timescale for magnetic
diffusion?
From the diffusion equation we find that

B

τ
=
ηB

l2
,

thus the diffusion timescale is,

τdiff =
l2

η
.

Now typical coronal values for l and η are 107 m and 1 m2s−1, respectively,
so τdiff ≈ 1014 s which is equivalent to 3.8 million years! Clearly diffusion in
the solar corona does not occur on a global scale.

As we have seen for rapid diffusion we need very short length scales which
implies steep magnetic field gradients and thus electric currents. Clearly cur-
rent sheets are an ideal place for magnetic diffusion and therefore reconnec-
tion to occur.
Rearranging the above equation we find that the rate of diffusion is

vdiff =
η

l
(7)

Globally in the solar corona vdiff is ≈ 10−7 ms−1 so is very slow.
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4 One-Dimensional Magnetic Reconnection

The simplest type of reconnection that can be imagined is a one-dimensional
process where a parallel magnetic field diffuses through a static plasma. This
is known as magnetic annihilation. In such a situation we have

v = (0, 0, 0) , and B = (0, B(x, t), 0) .

This means the induction equation becomes

∂B

∂t
= η

∂2B

∂x2 .

If this equation is solved under the initial conditions

B(x, t) =
{

B0 x > 0
−B0 x < 0 ,

it yields the following solution

B(x, t) = B0erf
(

x√
4ηt

)
=

2B0√
π

x/
√

4ηt∫
0

eλ2
dλ , (x > 0) ,

and B(−x, t) = −B(x, t).

t=0

t=t1

t=t2

Fig. 4. The magnetic field B in the xy plane at time t = 0, t1 and t2
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As the magnetic field diffuses it varies as shown in Figure 4 for times
t = 0, t1, t2. Clearly the strength of the magnetic field near the x-axis de-
creases over time (Figure 5). This is because the oppositely directed fieldlines
diffuse through the plasma and cancel (annihilate). Initially the magnetic field
gradient at x = 0 is steep, but as the process of annihilation continues this
gradient decreases, smoothes out as the field is diffused away, thus the current
sheet widen s and the diffusion rate, vdiff = η/l decreases, since l the scale
width of the current sheet increases.

x

B

-B0

B0

t=t1 t=t2

2  ηt1 2  ηt2

t=0

Fig. 5. The strength of the magnetic field B against x at time t = 0, t1 and t2

Magnetic Energy

What are the implications for the magnetic energy released from such a pro-
cess? The magnetic energy is defined as

Em =
1

2μ0

∫
V

B2dV .

So the rate of change of magnetic energy is

∂Em

∂t
=

∂

∂t

∫
V

B2

2μ0
dV =

1
μ0

∞∫
−∞

B
∂B

∂t
dx =

η

μ0

∞∫
−∞

B
∂2B

∂x2 dx ,

=
1
σμ2

0

⎧⎨⎩
[
B
∂B

∂x

]∞

−∞
−

∞∫
−∞

(
∂B

∂x

)2

dx

⎫⎬⎭ .

At infinity ∂B/∂x remains equal to zero so the first term vanishes and from
Ampere’s law we know that μ0j = ∂B/∂x, thus

∂Em

∂t
= − 1

σ

∞∫
−∞

j2dx .
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That is to say the magnetic energy is dissipated entirely through ohmic heat-
ing.

Clearly, in our magnetic annihilation model as the current sheet widens
ohmic heating decreases with time so this type of model is no good as a flare
model since it cannot explain the rapid heating observed in solar flares over
long periods. We need both advection and diffusion for reconnection to go
faster. Let us now move on to the classical reconnection models in 2D.

5 2D Magnetic Reconnection

5.1 Introduction

Two-dimensional reconnection is the process by which flux is transferred from
one topologically distinct magnetic region to another. Alternatively, it can
be defined as the mechanism by which new fieldlines are created.
Let us consider a 2D magnetic X-point. A point where B = 0, near which
the field is divided into four topologically distinct regions by special fieldlines
known as separatrices. The separatrices extend from either a magnetic source
or sink into the null. Consider the two fieldlines AB and CD indicated by a
dashed and dotted line respectively in Figure 6. A flow across the separatrices
brings the fieldlines in towards the null such that they lie along the separatri-
ces. Then diffusion may occurs near the null where short length scales exist
breaking and recombining the original fieldlines to give new fieldlines AD
made up of the first part of AB and the last part of CD and CB made up
of the first part of CD and the last part of AB.

B C

A D

B C

A D

B C

A D

separatrices

diffusion
  region

Fig. 6. Two-dimensional reconnection at an X-point of fieldlines AB (dashed) and
CD (dotted) to form fieldlines AD and CB

In 2D, reconnection can only occur at null points. It occurs due to non-
ideal effects and causes changes in the topology of the magnetic field and
gives rise to plasma flows across separatrices.
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5.2 2D Neutral Points

Structure

A magnetic neutral (null) point is a point at which all components of the
magnetic field are equal to zero, B = 0. The local field near such a point can
be described by

B = M · r ,
assuming, without loss of generality, that the neutral point is at the origin,
and where M is a 2x2 matrix and the position vector, r = (x, y)T . The
simplest form for M [19] is

M =
[

0 (q − jz)/2
(q + jz)/2 0

]
,

where q is some arbitrary constant and jz is the current in the z direction,

j = (0, 0, jz) .

Since ∇ · B = 0 the sum of the eigenvalues of M equal zero, thus if λ1 and
λ2 are the eigenvalues then

λ2 = −λ1 .

Assuming the eigenvalues are real and distinct the equation for a magnetic
fieldline can be written,

r(k) = Aeλ1kx1 +Beλ2kx2 ,

where xi is the eigenvector of M associated with eigenvalue λi.
If λ1 = −λ2 = λ > 0 then as k → ∞

r(k) → Aeλkx1 ,

and fieldlines will lie parallel to the eigenvector x1.
However, as k → −∞

r(k) → Be−λkx2 ,

and the fieldlines lie parallel to eigenvector x2.
Furthermore the fieldlines that lie exactly along the eigenvectors x1 and

x2 are the special fieldlines known as the separatrices. Real and distinct
eigenvalues can arise if |jz| < |q| (Figure 7a and 7b). If |jz|=0 then the
separatrices are at right angles and the field is potential, whereas if |q| >
jz| > 0 then the separatrices are at less than 90 degrees. If the eigenvalues of
the matrix M are repeated (|jz| = |q|) a degenerate 1D field arises containing
a null line (Figure 7c). Complex eigenvalues (|jz| > |q|) give rise to elliptical
fieldlines (Figure 7d).
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Fig. 7. Two-dimensional magnetic neutral points: (a) a potential null (jz = 0), (b)
non-potential X-point (|jz| < q), (c) anti-parallel fieldlines (|jz| = q) and (d) elliptic
null (|jz| > q)

Collapse

Dungey [3] was the first to investigate the collapse of an X-point. He consid-
ered the potential magnetic field B = (y, x) which has fieldlines

y2 − x2 = constant.

The separatrices are the fieldlines that pass through the null which is at the
origin, so they are given by y = x and y = −x. Since the null is potential,
j = 0 and the magnetic pressure and tension forces balance, j×B = 0 (Figure
8a).
If we now perturb the null slightly so that

B = (y, (1 + α2)x) α2 � 1 ,

the fieldlines become
y2 − α2x2 = constant .

The null is still at the origin, but now the separatrices are given by y = αx
and y = −αx and the field is now no longer potential, but has current,

j = (0, 0, (α2)/μ0) .

This means that the Lorentz force is non-zero,

j × B = (−(1 + α2)α2x/μ0, α
2y/μ0, 0) ,
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P T
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y

x

y

P

T

T

P

Fig. 8. (a)The magnetic fieldlines near a 2D potential X-point in equilibrium.
(b)The magnetic fieldlines near a 2D X-point not in equilibrium due to a uniform
current

and so the magnetic pressure and tension forces no-longer balance. In fact,
they act to increase the perturbation since there is a pressure force acting
towards the origin along the x-axis and a tension force acting along the y-axis
away from the origin (Fig. 8b). Hence the X-point is unstable. Note, however,
this is only true since the fieldlines are assumed to be free to move and are
not line-tied at the boundaries, thus energy can propagate into the system.

Formation of a Current Sheet

It was following this principle that Green [20] and Syrovatsky [21] used a
kinematic approach to explain the formation of a current sheet at a neutral
point. In a kinematic approach it is assumed that

E + v × B = 0 , (8)

∇ × E = 0 . (9)

Let us assume that our initial magnetic field is the potential field B = (y, x),
thus j × B = 0. The plasma flow is assumed to be of the form

v = (vx(x, y), vy(x, y)) ,

and from the kinematic equations we therefore find that

E = (0, 0, E0).

Now taking (8)×B we find that the component of velocity perpendicular to
the field B is equal to

v⊥ =
E × B
B2 =

(
− E0x

x2 + y2 ,
E0y

x2 + y2

)
.
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The magnitude of v⊥ is

|v⊥| = E0/B = E0/(x2 + y2) ,

and so it is singular at the origin. Since our flow can not be infinite one of
our assumptions must have broken down. Ohm’s Law (8) breaks down at the
origin, hence j = 0 everywhere, save at origin, where a current sheet may
form (Fig. 9).

The easiest way to represent a current sheet is as a cut in the complex
plane. So if we write z = x+ iy then initially,

B(z) = By + iBx = z.

and the current sheet field becomes

B(z) = By + iBx = (z2 + l2)
1
2 .

This represents a current sheet that extends from −l < y < l.

neutral point

current
s h e e t

Fig. 9. (a)The magnetic field about a potential 2D X-point. (b)The magnetic field
produced by slow motions indicated in (a) by the double arrows under the perfectly
conducting assumption

5.3 Current Sheets

A current sheet is a non-propagating boundary between two plasmas. On
either side the magnetic field is transverse to boundary, hence they are a
form of tangential discontinuity. There is no velocity flow across the boundary
which, since it is stationary, must be in total pressure balance, hence

p1 +
B2

1

2μ0
= p2 +

B2
2

2μ0
,

where p1 and B1 are the plasma pressure and magnetic field on one side of
the current sheet, and p2 and B2 are the plasma pressure and magnetic field
on the other side.

A neutral sheet is one in which B = 0, however, not all current sheets
are neutral (see Fig. 10). In the interior of a current sheet the magnetic field
evolves through diffusion whereas, outside the sheet, the magnetic field no
longer diffuses, but advects and so it’s evolution is defined by ideal MHD.
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x
y

z

B0

B1

B2

B-B

B=0

Fig. 10. (a)The magnetic field in planes either side of a current sheet with a uniform
field B0 in. (b)The magnetic field either side of a neutral sheet

5.4 The Rate of Reconnection

The key point of interest in any reconnection model is the rate at which the
reconnection occurs, but how do we calculate it?

The rate of reconnection is the rate of change of flux which equals ∂A/∂t,
where A is the flux function which satisfies

B = ∇ × A .

Hence from Faradays law (2) we find that

∇ × E = −∂B
∂t

= −∂(∇ × A)
∂t

,

which implies

| E |=| ∂A
∂t

| ,

and so the magnitude | E | is proportional to the rate of reconnection. If the
reconnection is steady ∂B/∂t = 0, and E = constant, therefore the rate of
reconnection is constant. From Ohm’s law,

| E |=| v × B |= vB = MABvA ,

whereMA = v/vA is the Alfven Mach number. If the magnetic field is uniform
then BvA is constant and therefore the inflow Mach numberMAi may be used
as a dimensionless measure of the reconnection rate.

If the reconnection rate is less than or equal to R−1/2
m as Rm tends to

infinity, then it is classed as very slow or slow reconnection, respectively.
However, if the reconnection is greater than R−1/2

m in the limit Rm → ∞ it
is classed as fast reconnection.
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5.5 Steady-State Slow Reconnection: Sweet-Parker

The first type of 2D reconnection we will consider is the classic steady-state
slow reconnection mechanism known as Sweet-Parker reconnection. Sweet [4]
and Parker [5] described an order of magnitude theory for a diffusion re-
gion such as the one sketched in Fig. 11. They assumed that the current

v0
B0

Bi

vi

2L

2l

Fig. 11. Sketch of a Sweet-Parker diffusion region and surrounding field

sheet(diffusion region) is a thin layer of length 2L and width 2l (l � L)
between two oppositely directed uniform magnetic fields. The plasma flow
into the current sheet is vi and �i is the inflow density. The outflow velocity
and density are given by vo and �o, respectively. The inflow magnetic field
is assumed uniform and of magnitude Bi and outflow magnetic field of mag-
nitude B0. They assumed that the reconnection process was incompressible,
thus �i = �o = � and that it was steady, so from the induction equation we
find that the inflow velocity must be equal to the diffusion rate, hence

vi =
η

l
. (10)

Conservation of mass implies that the amount of plasma entering the diffusion
region must equal the amount plasma leaving, thus

�ivi/l = �ovo/L ⇒ Lvi = lvo . (11)

Eliminating l from (10) and (11) gives

vi =
√
ηvo

L
. (12)

Furthermore, the steady state Ohm’s Law implies that the flux entering the
sheet must equal the flux leaving the sheet, hence,

viBi = voBo . (13)

From Ampere’s Law (1) we find that the current in the sheet is

jz =
Bi

lμ0
, (14)
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and ∇ · B = 0 implies

Bi

L
=
Bo

l
. (15)

The equation of motion along the sheet is just in the x-direction and so

�(v.∇)vx = −∂p

∂x
+ jzBy .

Neglecting the pressure gradient and using (14) and (15) it reduces to

�
(vo

L

)
vo =

Bi

lμ0

lBi

L
,

hence,

v2
o =

B2
i

μ0�
= v2

Ai , (16)

where vAi is the inflow alfven speed.
Thus we now know outflow speed and how the inflow speed depends on

vo. So we can calculate the reconnection rate, MAi = vi/vAi. From (12)
vi =

√
ηvo/L, (16) v0 = vAi and Rmi = LvAi/η the Mach number becomes

MAi =
vi

vAi
=
√
ηvAi

L
/vAi =

√
η

LvAi
=

1√
Rmi

.

So the Sweet-Parker reconnection rate is MAi = 1/
√

Rmi. If L is equal to a
global length scale of 107 m, say, then Rmi ≈ 1012 and so MAi ≈ 10−6 which
is far too slow to explain solar flares!

5.6 Steady-State Fast Reconnection: Petschek

The other best known classical 2D reconnection is Petschek reconnection [8].
This is a fast steady-state reconnection mechanism that considers both the
immediate field around diffusion region, plus the external field in the locality
of the diffusion region. Petschek realised that slow magnetoacoustic shock
waves provide another way, in addition to a diffusion region, of converting
magnetic energy into heat and kinetic energy, but how could these shocks be
formed? Slow magnetoacoustic shocks are generated when there is an obstacle
in a flow which is traveling faster than the slow magnetoacoustic wave speed.
In a reconnection situation the obstacle is the tiny diffusion region.

Petschek’s analysis was not completely rigorous, but it did show great
physical insight. It is quite hard to follow since it includes diffusion theory,
potential theory and MHD shock theory, so here I do not present Petscheks
analysis exactly as he did, but instead use an approach along similar lines.

Firstly, as shown in Fig. 12, we denote the external magnetic field, flow
and density by Be, ve and �e, respectively. The same quantities in the inflow
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Bi

Be

slow-mode shock

diffusion
region

Fig. 12. A sketch of Petschek’s magnetic field configuration

region are denoted by Bi, vi and �i and in the outflow region as Bo, vo and
�o, respectively. The small diffusion region is assumed to be a Sweet-Parker
type region with width l and length L where, l � L as before. The external
region has a typical length sca le of Le where L � Le. The external magnetic
field is assumed to be uniform so Be = (Be, 0, 0).

The basic aim of the following analysis will be to calculate the maximum
reconnection rate which implies finding the maximum MAe and hence the
maximum external flow, ve.

Relations Between External and Inflow Field

If we first consider the relations between the external and inflow field we find
that since the system is assumed to be steady state Ohm’s law implies

viBi = veBe ,

however,

v = MAvA = MA
B√
μ0�

,

so the above relation can be written

MAiB
2
i = MAeB

2
e . (17)

Relations Across the Diffusion Region

Relations between the inflow and outflow parameters are simply the same as
those in the Sweet-Parker model since the diffusion region is assumed to be a
Sweet-Parker region. Hence from the steady-state assumption (10) vi = η/l,
and from conservation of mass (11) and (16) imply

Lvi = lvo = lvAi .
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If we now introduce the following dimensionless parameters: the external mag-
netic Reynolds number, Rme; the external and inflow alfven Mach numbers,
MAe and MAi, which equal,

Rme =
LevAe

η
, MAe =

ve

vAe
and MAi =

vi

vAi
,

then we can write the ratio of length scales of the system as

l

Le
=

η

viLe
=

vAe

Rmevi
=

vAeBi

RmeveBe
=

M
1
2
Ae

RmeMAeM
1
2
Ai

=
1

RmeM
1
2
AeM

1
2
Ai

, (18)

L

Le
=

l

Le

vAi

vi
=

1

RmeM
1
2
AeM

3
2
Ai

. (19)

Relations Across the Shock

We now consider the shocks that extend out from each corner of the diffusion
region approximately parallel to the x axis. Due to the steady-state assump-
tion they must remain stationary and so the shocks must be traveling at the
same speed, but in the opposite direction to, the medium they are sitting in,
hence

vs = ve .

vs

ve

Fig. 13. Two slow mode MHD shock waves (dotted) back to back can make a
field (solid) reversal region. The shock and field are traveling at speeds vs and ve,
respectively.

The shock is said to be ‘switch-off’ in nature because the magnetic field
behind shock is normal to the shock itself, therefore, from the ‘switch-off’
shock relations

ve = vs =
Bn√
μ0�

, (20)

where Bn is the component of the magnetic field ahead of shock.
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The effect of the shock is to slightly distort the external magnetic field in
the inflow region so Bi = Be +Bdistort.

Since the inflow field is potential to first order the distortion to the exter-
nal field can be regarded as begin produced by a series of monopoles along
the x-axis between −Le and −L and L and Le (Fig. 14). To lowest order the
inclination of the shocks is neglected and at large distances the effect of the
monopoles is neglected since the field from the monopoles drops off as 1/r.
The distortion of the inflow field is therefore equal to the sum of the effects

LeL-L-Le 0

By-By

Fig. 14. The effective magnetic field of Petscheks reconnection site with the field
due to the shocks modeled as monopoles along the x-axis between (−Le,−L) and
(L, Le).

of all the monopoles of strength By,

Bdistort =

−L∫
−Le

−By(x− a)
π((x− a)2 + y2)

+
−Byy

π((x− a)2 + y2)
da

+

Le∫
L

By(x− a)
π((x− a)2 + y2)

+
Byy

π((x− a)2 + y2)
da ,

=
By

π

x+L∫
x+Le

w

w2 + y2 dw +
By

π

x+L∫
x+Le

y

w2 + y2 dw

−By

π

x−Le∫
x−L

w

w2 + y2 dw − By

π

x−Le∫
x−L

y

w2 + y2 dw ,

=
By

2π
[
log

(
(x+ L)2 + y2)− log

(
(x+ Le)2 + y2)

− log
(
(x− Le)2 + y2)+ log

(
(x− L)2 + y2)]

+
By

π

[
tan−1

(
x+ L

y

)
− tan−1

(
x+ Le

y

)
− tan−1

(
x− Le

y

)
+ tan−1

(
x− L

y

)]
.
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We are only interested in Bdistort in the immediate region about the diffusion
regions (near the origin) where

Bdistort(0, 0) =
2By

π
log

(
L

Le

)
.

Now we need to determine By. Figure 15 shows a close up of one quadrant
of the diffusion region and shock. Clearly for small θ,

Bn = By cos θ −Be sin θ = By −Beθ .

q

By
q

Bn

Bo
vo

ve

Be

Fig. 15. A close up of one quadrant of a Petschek reconnection configuration with
shock front indicated by a dashed line.

The conservation of Bn across shock implies

Bn = Bo cos θ ≈ Bo ,

and the conservation of v normal across shock implies

ve cos θ = vo sin θ , ⇒ ve = voθ .

These two relations couple with Ohm’s Law to give

veBe = voBo = voBn =
veBn

θ
.

So By = Bn +Beθ = 2Bn .
Thus, the inflow magnetic field is equal to

Bi = Be +
4Bn

π
log

L

Le
= Be

(
1 +

4MAe

π
log

L

Le

)
, (21)

since from (20) MAe = Bn/Be = θ << 1.
Also, we know that Bi/Be ≈ 1 since the inflow field is almost uniform

and therefore (18) and (19), the length scale relations, become

l

Le
=

1
RmeMAe

,

L

Le
=

1
RmeM2

Ae

.
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This implies that the dimensions of the central current sheet decrease as the
magnetic Reynolds number or reconnection rate MAe increases.

Petschek suggested that the mechanism chokes itself off when Bi becomes
too small so he estimated a maximum reconnection rate at Bi = Be/2

max MAe =
π

8 log Rme
.

This would imply a typical maximum reconnection rate of MAe ≈ 0.01 . A
rate that is fast enough to explain solar flares.

5.7 Steady-State Reconnection: Almost-Uniform

So far we have looked at the two classical steady-state reconnection mecha-
nisms, but are there any more steady-state mechanisms? Yes, in fact there
is a whole family of almost-uniform steady-state reconnection regimes [10].
These can be found by varying the boundary conditions of a setup similar to
that of Petscheks.

Priest and Forbes [10] started with the equations for 2D incompressible
flow,

�(v · ∇)v = −∇p+ (∇ × B) × B/μ0 (22)

E + v × B = 0 (23)

∇× E = 0 (24)

with ∇ · v = 0 and ∇ · B = 0 and looked for situations where fast, steady
and almost uniform reconnection would occur. There aim was to analyse the
inflow region to determine how MAi varied with reconnection rate MAe.

They considered a small perturbation about a uniform external field Be =
Bex and used MAe as the implicit expansion parameter such that

B = Be + B1 + ... , v = v1 + ... , and p = p0 + p1 + ... .

Equations (23) and (24) imply that E = constant = (0, 0,−E), so to first
order the equations can be written

0 = −∇p1 + (∇ × B1) × Be/μ0 ,

E +v1 × Be = 0 .

∇·B1 = 0 can be satisfied by writing the field as the curl of the flux function,
B1 = ∇ × A1. Thus, if we assume ∇p1 ≈ 0,

−Be

μ0

(
∂2A1

∂x2 +
∂2A1

∂y2

)
= 0 ,
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which implies

∇2A1 = 0 . (25)

Separable solutions were sort for A1,

A1 = X(x)Y (y) ,

under the following boundary conditions,
∂B1y

∂x
= 0 , on |x| = Le ,

B1x = 0 , on |y| = Le ,

B1y = f(x) =

⎧⎨⎩ −2Bn −Le < x < −L
2Bnx/L −L < x < L

2Bn L < x < Le

, on y = 0 .

The first is a free-floating boundary condition which ensures that B1y takes a
maximum or minimum on the boundary and the final condition is an attempt
to simulate the effect of the diffusion region and the shock (Fig. 16).

y

x

ve

vi

Be

Bi
v0 B0

L Le

Le

B1x=0

B1y=f(x)

dB1y=0dx

Fig. 16. Sketch of the magnetic field configuration in an almost-uniform steady-
state reconnection situation [10]

The solution to this problems is

A1 = −
∞∑

m=0

2Leam

(2m+ 1)π
cos

[
(2m+ 1)π

2Le
x

]
cosh

[
(2m+ 1)π

2Le
(Le − y)

]
,

and so the components of the magnetic field are

B1x = −
∞∑

m=0

am cos
[
(2m+ 1)π

2Le
x

]
sinh

[
(2m+ 1)π

2Le
(Le − y)

]
,

B1y =
∞∑

m=0

am sin
[
(2m+ 1)π

2Le
x

]
cosh

[
(2m+ 1)π

2Le
(Le − y)

]
,
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where

am =
16Bn sin [(2m+ 1)πL/2Le]

L/Le (2m+ 1)2 π2 cosh [(2m+ 1)π/2]
.

This represents a Petschek type solution with a weak fast-mode expansion:
the first order flow is uniform (v1 = E1/Bey), but the second order flow is
converging. The reconnection rate can be calculated from (17) and (21). It
shows that as MAi increases so too does MAe until it saturates as Petschek
anticipated.

0.10

0.05

0.00
0.0 0.5

Mi
( )

1.0

105

104

103

Rme= 102

Me

Fig. 17. A plot of MAe versus MAi for different Rme [10]

However, if we now include a pressure gradient then (25) becomes

∇2A1 = − μ0

Be

dp1

dy
.

Using the same boundary conditions this leads to the new solution,

A1 = −
∞∑

m=0

cm

(
b+ cos

[
(2m+ 1)π

2Le
x

])
cosh

[
(2m+ 1)π

2Le
(Le − y)

]
,

where cm = 2Leam/((2m+ 1)π) and the new parameter b (relating to pres-
sure) has a dramatic affect as it produces a whole range of different regimes:

• b = 0 Petschek’s regime
• b = 1 Sonnerup-like solution: weak slow-mode expansion across whole

inflow region
• b < 0 streamlines near y-axis are converging so tend to compress the

plasma: slow-mode compressions
• b > 1 streamlines near y-axis are diverging so tend to expand the plasma:

slow-mode expansions - “flux pile up”
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• 0 < b < 1 Hybrid family of slow and fast-mode expansions

The magnetic field structures of almost-uniform reconnection regimes are
shown in Fig. 18 with the different types of inflow indicated by dashed lines
and the magnetic field indicated by solid lines. A plot of MAe versus MAi for
almost-uniform reconnection regimes reveals that depending on the parame-
ter b the rate of reconnection can vary greatly from a fast regime to a slow
regime (Fig. 18g).

Mi (diffusion region)

(g)

M
e 

(e
x
te

ri
o
r)

fast
exp

an
sio

n

fl
u
x
-p

il
e-

u
p

b
=

1
.1

b = 0.9

Petschek b = 0

Son
ne

ru
p

b =
1

st
ag

n
at

io
n

fl
o

w
b

=
1

.5

b = -1.5

Sweet-Parker

compression

slow expansion

Fig. 18. Magnetic field configurations of almost-uniform steady-state reconnection
situations with the pressure parameter b equal to (a) b < 0 (b) b = 0 (c) 0 < b < 2/π
(d) 2/π < b < 1 (e) b = 1 and (f) b > 1 [10]. (g) A plot of MAe versus MAi for
different values of b

5.8 Numerical Experiments

All the reconnection regimes we have discussed so far have been analytical,
but a considerable amount of work has been carried out numerically. Biskamp
[9] attempted to reproduce Petschek reconnection numerically, but failed. He
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could only achieve a slow reconnection rate proportional to the Sweet-Parker
rate and also found that the length and width of the current sheet increased
as MAe or Rme increased (in total c ontrast to Petschek). He therefore con-
cluded that Petschek reconnection (and therefore fast reconnection) did not
exist for high Rme. This of course was very worrying to the solar physics
community, who at the time only knew of Sweet-Parker and Petschek recon-
nection, because it implied that reconnection could not explain solar flares.
Furthermore, his results showed some interesting features not explained by
either of the two analytical reconnection models. These were strong jets ob-
served along the separatrices and reverse current spikes observed at the end
of the diffusion regions.

These results prompted an argument that still continues today as to
whether fast Petschek reconnection exits. However, Biskamps boundary con-
ditions were completely different from Petscheks. For example, the nature
of inflow varied from converging to highly diverging, whereas Petschek had
weakly converging inflow and the inflow fieldlines were highly curved with
a large shock angle as opposed to almost uniform and a small shock an-
gle in Petscheks models. These changes were enough to completely alter the
nature of the reconnection as demonstrated by the almost-uniform family
of reconnection regimes [10]. Furthermore, numerical experiments have been
conducted by Priest and Lee [11] using boundary conditions consistent with
Petschek’s model where fast reconnection has been obtained.

6 3D Magnetic Reconnection

In 2D, reconnection has to take place at a null point and is defined as the
transfer of flux across separatrices or as the process by which magnetic field
topologies are changes. However, these definitions are not robust in 3D. In-
deed, a neutral point in 2D is equivalent to a null-line in 3D which is struc-
turally unstable. The definition of reconnection in 3D is still under debate
partly because to define such a process we need to understand how the pro-
cess works, and the field of 3D reconnection is still fairly new [13,14,15]. Of,
course, reconnection is still a non-ideal process, however, it may occur both
at neutral points and without neutral points in 3D.

6.1 3D Neutral Points

Structure

Before we can investigate 3D reconnection at neutral points we need to un-
derstand the topology of 3D neutral points. As in 2D, a 3D neutral point is a
point at which all components of the magnetic field are equal to zero, B = 0
and, as before, the local field near such a point can be written

B = M · r ,
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where M is a 3x3 matrix and r is the position vector. The simplest form for
M that allows for all the different types of 3D neutral points, but does not
allow for duplication through rotation [19], is⎡⎣ 1 (q − j‖)/2 0

(q + j‖)/2 p 0
0 j⊥ −(p+ 1)

⎤⎦ ,

where the current equals j = (j⊥, 0, j‖) . Let the eigenvalues of M be denoted
by λi and xi be their corresponding eigenvectors. As in 2D, we find that
satisfying the condition ∇ · B = 0 implies that the sum of the eigenvalues of
M is equal to zero,

3∑
i=0

λi = 0 ,

hence, λ1 and λ2 will be of one sign and λ3 will be of the opposite sign.
If the two eigenvalues of the same sign are positive then the null is known

as a positive null (or A-type [22]). If the eigenvalues of the same sign are
negative then the null is known as a negative null (or B-type [22]).

Assuming that all the eigenvalues are real and distinct the equation for a
fieldline can be written

r(k) = Aeλ1kx1 +Beλ2kx2 + Ceλ3kx3 .

If λ1 and λ2 > 0 and λ3 < 0 then as

k → ∞ r(k) → Aeλ1kx1 +Beλ2kx2 .

This means that fieldlines that pass very close to the null will lie in surfaces
parallel to the surface defined by eigenvectors x1 and x2 when they are di-
rected away from the null. This surface is known as the fan plane (Fig. 19a).
However, as

k → −∞ r(k) → ceλ3kx3 ,

so the fieldlines that pass close to the null run parallel to the eigenvector x3
when they are directed towards the null. This line is known as the spine of
the null (Fig. 19a).

In all the 3D null configurations we consider here the spine is always taken
to be directed along the z-axis. The components of the current j⊥ refer to
the current in the direction perpendicular to the spine, whilst j‖ refers to
that parallel to the spine.

Configurations

Clearly in 3D there are many more different types of neutral point config-
urations than just the four in 2D. Indeed, in 3D there are a whole class of
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Potential Nulls Non�potential Nulls

p � �� jk � �� j� � � p � ����� jk � ���� j� � � p � �� jk � �� j� � �

p � �� jk � �� j� � � p � ���� jk � �� j� � � p � ����� jk � ��� j� � ����

�a� �c� �e�

�b� �d� �f�

SPINE

FAN

XXXz

CCO

Fig. 19. Linear three-dimensional nulls. Potential nulls: (a) radial and (b) improper.
Non-potential nulls: (c) improper and (d) spiral, both with only parallel current.
(e) radial, with only perpendicular current and (f) spiral, with both component of
current.

potential nulls whereas in 2D there is just one. The 3D potential nulls have
the mathematical form

B = (x, py,−(p+ 1)z) .

Their spine and fan planes are always at right angles to one another and the
fieldlines in the fan plane are either radial (Fig. 19a) or symmetrically gather
in two bundles around the x or y axis (Fig. 19b).

There are also many types of non-potential nulls. For example, a null with
a field of the form

B = (x+ (q − j‖)y/2, (q + j‖)y/2 + py,−(p+ 1)z) ,

has only current along the spine, assuming that the spine is along the z axis.
In such nulls the spine and fan are perpendicular, as in the potential case,
but the fieldlines in the fan plane are either skewed, if |j‖| < q (Fig. 19c), or
spiraled, if |j‖| > q (Fig. 19d). In the case where there is only a component
of current perpendicular to the spine,

B = (x, py, j⊥y − (p+ 1)z) ,

assuming the spine is in the z direction. Such nulls have their fan plane
inclined at some angle to the spine as seen in Fig. 19e. Finally, nulls with
both parallel and perpendicular components of current will have inclined fan
planes and skewed or spiraled fieldlines (Fig. 19f).
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6.2 3D Kinematic Neutral Point Reconnection

Having familarised ourselves with 3D neutral points let us now move on to
consider how reconnection could occur about these points. To do this we
will follow the approach taken by Priest and Titov [18]. They considered a
kinematic approach in much the same way as Green and Syrovatsky did for
2D reconnection, thus the equations considered are,

E + v × B = 0 , (26)

∇ × E = 0 . (27)

under the assumption that the magnetic field evolves through a series of
equilibria with j × B = 0.

The magnetic field B is prescribed and a velocity v is imposed on the
boundary. The system then evolves under the kinematic assumptions and
the flow is investigated to see if it becomes singular at any point. If it does
then it is taken to imply that one of our assumptions is wrong and that
non-ideal effects are important in the region of the singularity. This region is
therefore likely to be where the reconnection occurs.

Spine Reconnection

Let us consider the magnetic field B = (r, 0,−2z) and let us try and find a
velocity field of the form v(r, φ, z) = (vr, 0, vz) which will cause flow across
the fan plane which lies in the xy plane.
Putting B and v into Ohms law implies

E = (0, E, 0) ,

and so from steady state Faraday’s law (27) we find that

∂E

∂z
= 0 and

1
r

∂Er

∂r
= 0 .

So

E =
E0(φ)
r

.

Now considering (26) × B we can calculate the perpendicular component of
the magnetic field,

v⊥ =
E × B
B2 =

(
2E0z

r(r2 + 4z2)
, 0,

E0

r2 + 4z2

)
.

Clearly the magnitude of v⊥ = E0/B = E0/r(r2+4z2)
1
2 and so v⊥ is singular

at origin and all the way along the z-axis, the spine of the null.
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To see what effect such a flow would have on the magnetic field let us
look at a flux surface and see how that evolves. Firstly we know that the
equations for the fieldlines are r2z = constant and φ = constant and flux
surfaces are envelopes of these fieldlines. Suppose we consider the flux surface
that intersects the cylindrical surface r = 1 at height z = 1 − t sinφ. Then
for 0 < φ < π the fieldlines move down at a speed ż = − sinφ and trace out
the curves shown in Fig. 20a.

Fig. 20. The intersection of a flux surface near a radial null with (a) the r = 1
surface and (b) the z = 1 plane due to a flow across the fan plane at times t =
0, 0.5, 1, 1.5 and 2.

The flux surface through them is the surface r2z = 1− t sinφ which meets
the z = 1 plane in the curve,

r2 = 1 − t sinφ (t < 1/ sinφ, 0 < φ < π).

Footpoints with π < φ < 2π that cut the z = −1 plane will thread the r = 1
cylinder at z = −1−t sinφ. The flux surface through them is r2z = −1−t sinφ
and meets the z = 1 plane at

r2 = −1 − t sinφ (−t sinφ > −1, |φ− 3π/2| < −1/ sinφ).

A sketch of the curves on z = 1 plane are shown in Fig. 20b. The flux surfaces
described evolve in the manner shown in Fig. 21. So far we have the form for
the magnetic field, the electric field and the perpendicular velocity, however,
is it possible to calculate the total velocity v? Substituting B and E into
Ohms law we find

E0

r
− 2zvr − rvz = 0 ,

therefore the velocity can be written,

v =
(
E0 − r2vz

2rz
, 0, vz

)
.
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(b)(a) (c) (d)

Fig. 21. Motions of flux surfaces in spine reconnection [18]

If we now make the further assumption that the flow is incompressible, ∇·v =
0, we can find a separable solution for the velocity,

v =
(
E0r

2α −Azα

2zr2α+1 , 0,
Azα

r2α+2

)
,

where α is an arbitrary constant and v is always singular at r = 0.

Fan Reconnection

Now consider the magnetic field B = (x, y,−2z) and look for solutions that
will give us continuous motions on the surfaces z = ±1, i.e. look for solutions
that drive in parallel lines across z = ±1 planes. Such a solution is given by

E =
1

(4 + y2z)3/2z1/2

(
(4 + y2z)z,−xyz2, 2x

)
,

and

v⊥ =
1
w

(−2xy(z3 − 1),−2(x2 + 4z2 + y2z3),−yz) ,
where w = (x2 + y2 + 4z2)(4 + y2z)3/2z1/2. A z → 0 , v⊥x and v⊥y →
∞ like z−1/2. So steady ideal MHD breaks down in the fan plane. On
z = 1 , v⊥x = 0 and v⊥y are independent of x, thus the footpoints of
the fieldlines that thread z = 1 are driven at a constant speed parallel to
the y-axis. On the cylinder x2 + y2 = 1 the footpoints of the fieldlines swing
around and down the cylinder when x, z > 0, and around and up cylinder
when x, z < 0. This means that the flux surface in x = 0 plane reconnects at
the fan. A sketch of the evolution of the flux surfaces during fan reconnection
is shown in Fig. 22.

6.3 3D Numerical Experiments

These kinematic results have been backed up by numerical experiments [23,24].
Rickard and Titov [23] solved the linearized resistive MHD equations under
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Fig. 22. Motions of flux surfaces in fan reconnection [18]

the line tied boundary condition. The initial magnetic field was taken to be
that of a radial null, B = (Br, Bθ, Bz) = (r, 0,−2z), which was perturbed
by one of two types of perturbation, either an m = 0 or m = 1 (Fig. 23).
An m = 0 perturbation is one in which the spine is either compressed or
stretched or the null is rotated about the spin e. In all m = 0 cases the spine
and fan maintain their right-angled inclination. m = 1 perturbations involve
a bending of the spine or fan such that the inclination between the spine and
fan increases or decreases.

Fig. 23. Typical perturbations that may be suffered by a 3D null. In these diagrams
the spine is vertical and the fan is horizontal [23]

In the first case the null is twisted about the spine first one way and then
the other. This led to a the generation of a Bθ that propagated in towards the
null along the fan plane (Fig. 24a and 24b). A corresponding jz component of
current similarly ran in along the fan plane then spread out along the spine
implying the likelihood that the reconnection will occur along the spine (Fig.
24c and 24d).

In the second case the null under went a small m = 1 perturbation which
led initially to a global current build up. After a few alfven crossing times,
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Fig. 24. The resulting Bθ and jz at times t = 1 and t = 2.25 induced in a radial
null due to an m = 0 perturbation.

though, the current dissipated such the jr and jθ components spread out
along the fan plane whilst the jz component lay parallel to the spine of the
null (Fig. 25a). However the jθ and jz components of current rapidly decay
after a few alfven times whilst the jr component tends to a finite value. This
indicates the likelih ood that reconnection would take place in the fan plane
(Fig. 25b).

Of course, in their experiments they just used a linearised resistive code,
however, the same sort of results have been obtained using a full resistive
MHD code [24]. Galsgaard [24] in his experiments also assumed line tying
at the boundaries and choose his initial field to be a radial null. As in the
previous work his results show that an m = 1 perturbation leads to current
accumulations in the fan plane.

6.4 Reconnection Without Nulls: Quasi-separatrix Layers

So far we have just discussed reconnection in three-dimensions at neutral
points, however, reconnection can also occur without neutral points. Priest
and Demoulin [17] attempted a kinematic analysis of this type of reconnec-
tion.

They considered the magnetic field

B = (x,−y, l), l � 1 ,
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Fig. 25. (a)The resulting jr, jθ and jz at times t = 0.5, 1, 1.5, 2 and t = 2.5
induced in a radial null due to an m = 1 perturbation. (b)The magnitude of jr, jθ

and jz are plotted against time [23]

which clearly has no points where B = 0. The fieldlines of such a field are
defined by

x = x0ez/l and y = y0e−z/l .

Let the footpoint of one fieldline in the z = 0 plane be (x0, y0, 0). This
fieldline will thread the z = 1 plane at the point (x0e

1/l, y0e
−1/l, 1). Now

let us assume that the footpoint of this fieldline moves from (x0, y0, 0) to
(−x0, y0, 0), thus the corresponding endpoint in the z = 1 plane would move
from (x0e

1/l, y0e
−1/l, 1) to (−x0e

1/l, y0e
−1/l, 1). Clearly the footpoint on z =

1 plane moved a much greater distance and therefore faster than the footpoint
on z = 0 plane. It in fact moves a factor e1/l times faster and since l <<
1 , e1/l is very large, thus the fieldlines either moved unphysically fast or
reconnected .

To determine the region in which the fieldlines have this type of behaviour
and hence which fieldlines reconnect they investigated the gradient of the
displacement of the fieldlines given by the displacement gradient tensor (F )
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which equals

F =

⎛⎝∂x1/∂x0 ∂x1/∂y0

∂y1/∂x0 ∂y1/∂y0

⎞⎠ .

If F is very large in some region then that region is said to be a quasi-
separatrix layer in which reconnection can occur. For example, consider the
above magnetic field, but this time bound it by the cube

|x| ≤ 1/2 , |y| ≤ 1/2 and 0 ≤ z ≤ 1 .

If the fieldline footpoints are given by (x0, y0, 0), as before, and x0 <
e−1/l/2 then the fieldlines will map to the upper surface of the cube since
x1 < 1/2. The displacement gradient tensor therefore becomes

F =
(

e1/l 0
0 e−1/l

)
.

The magnitude (or norm) of this tensor (N) is given by

N =

√
∂x1

∂x0
+
∂x1

∂y0
+
∂y1
∂x0

+
∂y1
∂y0

=
√

e2/l + e−2/l ≈ e1/l .

However, if e−1/l/2 < x0 < 1/2 then the fieldlines map to the side of the box
and the displacement gradient tensor is

F =
(

0 0
2y0 2x0

)
.

So in this case the norm of the tensor equals

N = 2
√
x2

0 + y2
0 .

Therefore, as x0 increases from 0 to e−1/l/2 the other end of the fieldline
rapidly increases from 0 to 1/2 whilst y1 remains equal to e−1/ly0. And since
l � 1 and N ≈ e1/l the norm of the tensor is large. However, as x0 increases
from e−1/l/2 to 1/2, x1 remains constant at 1/2 and the norm of the tensor
N <

√
2 so is small. Therefore regions parallel to y-axis out to |x| = e−1/l

are where reconnection takes place. These regions are called quasi-separatrix
layers (QSLs). A sketch of reconnection at quasi-separatrix layers is shown
in Fig. 26. Currently experiments are underway to determine if this type of
behaviour can be reproduced numerically.

7 Summary

This review gives an overview to the basics of magnetic reconnection and the
classical aspects of reconnection in both 2D and 3D. In particular, we have
seen that,
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Fig. 26. A sketch of the motion of fieldlines near a quasi-separatrix layer [17]. The
shaded regions represent the quasi-separatrix layers.

• Reconnection is an efficient means of converting magnetic energy to ther-
mal and bulk kinetic energy

• Reconnection only occurs locally in the solar corona where short length
scales exist

• Magnetic fields evolves due to advection and diffusion
• The magnetic Reynolds number Rm is ≈ 108 −1012 in the corona and so,

in general, the magnetic field is frozen-in to plasma
• 2D Reconnection only occurs at neutral points
• Steady-state reconnection can be fast or slow depending on boundary

conditions
� Sweet-Parker reconnection is slow
� Petschek reconnection is fast

• Petschek reconnection is not special but just one of many fast reconnec-
tion regimes

• Petschek reconnection can be obtained from numerical experiments
• Reconnection in 3D is quite different from reconnection in 2D since it can

occur:
� at neutral points
� without neutral points

• Reconnection at neutral points is either
� spine reconnection - reconnection of fieldlines across the spine
� fan reconnection - reconnection of fieldlines across the fan plane

• Reconnection without neutral points occurs in quasi-separatrix layers
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Abstract. This paper presents a simplified overview of the role of the magnetic
field in the solar atmosphere. The magnetic field emanating from the solar inte-
rior governs energy transport and plasma motions in the outer solar atmosphere.
Thereby it creates structure, such as coronal holes, loops and prominences, and the
dynamical phenomena known as coronal mass ejections and flares. The magnetic
field is also thought to be at the origin of the coronal heating, so of the corona it-
self. An overview of atmospheric structure is presented, followed by illustrations on
present ideas on the interaction between plasma and magnetic field. The physical
conditions in the corona are briefly compared to those in the magnetosphere. The
emphasis is then put on the energetic processes from the largest ones (coronal mass
ejections) over flares and X-ray bright points to coronal heating. In all cases mag-
netic reconnection is likely to play a key role. Solar prominences are then described
because their observations provide important information on the surrounding coro-
nal magnetic field. Finally the implications of processes in the convection zone on
the physics of the corona and of the interplanetary medium are illustrated for the
case of formation, storage and ejection of twisted magnetic flux tubes.

1 Introduction

Solar magnetic fields are created at the bottom of the convection zone from
the kinetic energy of the dense plasma. Buoyant flux tubes rise into the
atmosphere, such that the magnetic field eventually fills the corona, creates
its structures and governs its dynamics. This provides energy transport into
the atmosphere, where the interaction between the plasma and the magnetic
field leads to dynamical phenomena including heating, particle acceleration
and the ejection of material.

The term “atmosphere” designates the outer envelope of the Sun, where
the electromagnetic radiation is generated. Section 2 of this review presents
the basic temperature regimes of the atmosphere (photosphere, chromosphere,
corona), outlines the different types of electromagnetic radiation, and illus-
trates the most important plasma structures in the (low-beta) corona that
we interpret as being generated by the magnetic field.

Present ideas on the interaction of plasma and magnetic fields in the
corona are discussed for selected topics in the following Sections. Emphasis
is laid on the structure and evolution of the magnetic field configurations.

J.-P. Rozelot, L. Klein, J.-C. Vial (Eds.): LNP 553, pp. 99–135, 2000.
c© Springer-Verlag Berlin Heidelberg 2000
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The physical system is always described by MHD equations (see e.g. Hey-
vaerts 2000). Each selected topic is treated in two basic parts: the first is
general, introducing the subject, and the second focuses on one aspect of
present research. Several textbooks treat these subjects with more detail:
Stix (1991) provides an introduction to solar physics with emphasis on the
interior and low atmosphere. Tutorial lectures and reviews on all fields of
solar physics are presented in the books edited by Cox et al. (1991) and
Schmelz and Brown (1992). Priest (1982) is a classical monograph providing
both a summary of observations and models with emphasis on the solar at-
mosphere viewed from the MHD point of view. The solar corona has been
recently reviewed by Golub and Pasachoff (1997). A review based mostly on
white-light and radio sounding observations of large-scale properties is Bird
and Edenhofer (1990). Flares and filaments have been described in detail by
Tandberg-Hanssen and Emslie (1988) and Tandberg-Hanssen (1995), respec-
tively. Coronal mass ejections are reviewed in the book edited by Crooker,
Joselyn and Feynman (1997). For kinetic aspects of solar and stellar coronae,
which are not discussed here, the reader is referred to Benz (1993).

The release of magnetic energy in the corona occurs over a broad range
going from 1025 J within minutes to hours (large flares, coronal mass ejec-
tions), possibly down to tiny and yet undetectable events such as Parker’s
suspected nanoflares (1016 J). One main, but not the only, process invoked
is magnetic reconnection, which has been extensively studied in 2-D (see e.g.
Parnell 1998). This approach has highlighted the importance of magnetic
topology (Sect.4.1). Recent works have evolved from 2D to 3D reconnec-
tion, giving a completely new view; this is shortly summarized to describe
the energy release from the most spectacular events of large-scale magnetic
restructuring (coronal mass ejections, in Sect.4.2) to small-scale phenomena
including flares (Sect.4.3), X-ray bright points (Sect.4.4), and coronal heating
(Sect.4.5). The prominences / filaments are then described in Sect.5 because
of their particular plasma structuration and because they provide important
information on the surrounding coronal magnetic field. Finally in Sect.6, an
attempt is presented to link a part of the physics of the convective zone, of
the corona and of the interplanetary medium.

2 The Structure of the Solar Atmosphere

2.1 General Aspects and Temperature Regimes

The schematic evolution of temperature with height in the solar atmosphere
is plotted in Fig. 1. The photosphere is the deepest layer directly observable
through its electromagnetic radiation (mainly visible light). The level of zero
altitude (“bottom” of the photosphere) is defined as the height where the
optical depth of radiation at 500 nm wavelength is unity. The temperature
of the black body which gives the closest approach of the observed intensity
spectrum of the radiation is ∼5700 K, but local temperature depressions
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Fig. 1. Evolution of the electron temperature in the solar atmosphere as a function
of height above the photosphere. The curve gives a schematic view of an “average”
quiet atmosphere. Ph=photosphere, Ch=chromosphere, TR=transition region

(e.g. sunspots) and enhancements (faculae) by up to 1000 – 2000 K exist.
Temperature first decreases with increasing altitude to a minimum of about
4400 K (“top” of the photosphere), over a distance of some hundreds of km.
The cooler gas in the upper photosphere creates many absorption lines in
visible light which are superposed upon the blackbody spectrum. Doppler
and Zeeman effect measurements of these lines give the basic information on
material flows and magnetic fields which govern the structure and dynamics
of the overlaying atmosphere.

Above the photosphere temperature rises with increasing altitude. The
region between the temperature minimum and ∼ 25 000 K is called the
chromosphere because its optical and UV emission lines create a colored ring
around the lunar disk during an eclipse. Besides in UV, the chromosphere
can be observed in optical absorption lines (e.g. Hα ) and at short radio
wavelengths: the electron density in the atmosphere far from active regions
is such that radio emission generated by free-free transitions (acceleration of
free electrons by the electrostatic field of ions) can escape at frequencies above
a few GHz (centimeter wavelengths). The thickness of the chromosphere is
between one and a few thousand km.

The corona is the outer region of the atmosphere, with temperatures
≥ 106 K. The narrow region between the upper chromosphere and the corona
is called the (chromosphere-corona) transition region. The corona is visible
in white light due to the scattering of photospheric light by free electrons
(“K-corona”) and dust (“F-corona”). Coronal emission comprises spectral
lines of highly ionized heavy elements in visible, UV and EUV (especially Fe
and Ca), as well as continuum emission (X, radio) due to free electrons. In
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the presence of strong magnetic fields, i.e. in the low corona above sunspots,
centimetric cyclotron radio emission at low (2 to 4) harmonics of the elec-
tron cyclotron frequency (called also gyroresonance emission) is observed,
while various types of transient anisotropic electron distribution functions
in the active corona generate electromagnetic emission at centimetric and
longer wavelengths via collective processes such as beam-plasma or loss-cone
instabilities.

2.2 Magnetic Fields and the Structure of the Solar Atmosphere

Due to magnetic fields generated by a dynamo mechanism in the convection
zone underneath the photosphere, the atmospheric structure, especially in
the corona, is far from being spherically symmetric. Figure 2 shows views of
different temperature regimes of the atmosphere through images at different
wavelengths taken on a day of weak activity (“quiet” atmosphere, Fig. 2.a)
and on a day when two active regions are present in the eastern hemisphere
(left half of the images in Fig. 2.b, zoom on one of the active regions in
Fig. 2.c).

Zeeman effect measurements in photospheric lines provide maps of the
line-of-sight component of the magnetic field (top row) where active regions
appear as magnetic field concentrations with a bipolar or a more complex
multipolar configuration. Photospheric continuum emission (second row from
top) shows sunspots, which are darker (cooler) than the average photosphere,
and surrounding faculae, which are brighter (hotter) than the quiet pho-
tosphere at a given optical depth. Chromospheric lines (central row) show
bright plages above regions of strong photospheric fields. The chromospheric
lines also reveal structure outside active regions, such as the dark filaments
(Fig. 2.a, near the south-eastern limb; Fig. 8a for a detailed view of another
filament), which are concentrations of cool matter (∼7000 K) within the hot
ambient corona. When seen at the limb, these structures are bright with
respect to the dark sky, and are called prominences for historical reasons
(e.g. the gray feature embedded within the background corona at an angle
∼ 36 deg clockwise from top in Fig. 3).

X-ray (Fig. 2.a, second panel from bottom) and radio emission (bottom)
of the quiet corona trace the thermal plasma, including the extended regions
of low brightness (low electron density and temperature) at the poles and
on the disk: coronal holes. These features have no evident counterpart in the
underlying atmosphere. They overly photospheric regions with weak unipolar
magnetic fields, and the coronal field lines are open towards interplanetary
space. Coronal holes are the source of the fast solar wind. The corona of active
regions consists of hot and dense plasma loops giving bright X-ray emission
(Fig. 2.b, c). In these regions the plasma delineates predominantly (but not
exclusively) closed magnetic field structures. The numerous bright points
found in EUV- and X-ray images all over the Sun (Fig. 2.a) overly small
bipolar magnetic field patterns in the photosphere outside active regions.
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Fig. 2. Views of the solar atmosphere at different wavelengths, during a quiet period
(a) and in the presence of active regions (b). (c) is a zoom of the north-eastern
(upper left) active region
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Fig. 3. Solar eclipse in white light (courtesy High Altitude Observatory, Boulder)

At decimetric and longer wavelengths suprathermal electrons accelerated in
active regions provide a bright emission through collective processes (“noise
storms”) that outshine emission of the hot thermal plasma by one to two
orders of magnitude (Fig. 2.b, c, bottom).

At heights above (1–2) R� above the photosphere the plasma structures
seen in white light indicate that the magnetic field is mostly open. The most
prominent extended structures on eclipse photographs (e.g. Fig. 3) are the
coronal streamers. Their shape suggests that a closed magnetic field config-
uration at low heights, covering a large surface on the Sun, narrows with
increasing altitude, and is eventually torn open by the outward streaming
(slow) solar wind. Closer inspection of eclipse observations and of measure-
ments using the signals of artificial or cosmic radio sources traveling through
the outer regions of a streamer show numerous, more or less radially oriented,
narrow structures which have been interpreted as multiple current sheets on
top of the closed magnetic structure at the base of the streamer (Woo et al.
1995).

The atmospheric structures identified in these figures are quasi-steady in
that they keep a similar shape for several days or weeks. But a permanent



Structuring of the Solar Plasma 105

energy input is required to maintain the hot plasma and the nonthermal
electron populations.

Noise
storms

Fig. 4. Density vs. height profiles in different coronal structures (inferred from
white light observations, Koutchmy 1994 and from noise storm observations with
the Nançay Radioheliograph)

Coronal Electron Density The analysis of images in coronal emission
lines (visible light, EUV, X) shows that the low corona has a hetero-
geneous (electron) temperature structure, ranging from the vicinity of
106K K to ∼ 7 · 106 K. Plasmas of different temperatures, seen in different
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wavelength ranges, may be confined in different loop structures. Furthermore
the legs of identified loops are usually cooler than their summits. Commonly
quoted values of the electron density at the top of soft X-ray loops in active
regions are in the range (3− 13) · 109 cm−3 (e.g. Yoshida and Tsuneta 1996),
and similar values are inferred from white-light observations (Fig. 4). These
are lower limits, due to the assumption that the plasma fills a loop whose
dimension along the line of sight is comparable to the observed width.

Ion temperatures can be derived from the widths of EUV emission lines,
provided that competing broadening effects such as unresolved small-scale
motions of the plasma in the source region can be corrected for. Recent
SoHO analyses of coronal holes suggest that ion temperatures are consider-
ably higher than electron temperatures (Tu et al. 1998; Wilhelm et al. 1998;
David et al. 1998) - e.g. Ti � (1 − 5) · 106 K for Ne ions as opposed to
Te < 106 K, and that different ions have different temperatures. The decreas-
ing role of collisions seems to become noticeable in the low-density plasma of
coronal holes, even at altitudes as low as a fraction of a solar radius. The large
ratio of ion-to-electron temperature in coronal holes is similar to the results
of in situ measurements in fast solar wind streams by Helios at 0.3 AU, while
in slow solar wind streams the electron temperature seems slightly higher
than the proton temperature (Schwenn 1990).

Part of the coronal white-light emission is due to Thomson scattering of
photospheric light by the coronal electrons. Its intensity measures the inte-
grated electron density along the line of sight, and can be used to infer the
electron density in large-scale coronal structures. Using eclipse observations
and assumptions on the dimension of the sources along the line of sight,
Koutchmy (1994) derived the electron density distributions of Fig. 4 for var-
ious coronal structures. Other density measurements for the quiet Sun and
coronal holes from both white-light continuum and EUV lines give curves
similar to those of the equatorial and polar regions of the quiet Sun in Fig. 4
(Withbroe 1988; first SoHO results in ESA SP-404). The plot represents
log ne as a function of R�/r, the inverse of the heliocentric distance in units
of the solar radius. In this representation the barometric isothermal density
law in an unmagnetized plasma

ne(r) = ne(R�) exp[−R�
H�

(1 − R�
r

)]

is a straight line. Here H� = kT
μmpg�

is the density scale height, k Boltzmann’s
constant, g� the gravitational acceleration at the solar surface, mp the proton
rest mass, μ = 0.6 the mean molecular weight. ne(R�) is the reference density
at the base of the corona.

The local electron density can in principle be inferred from the measure-
ment of positions of dm/m-wave noise storms (cf. Fig. 2.b,c bottom panels)
without the need to inverse the line-of-sight integration. The radiation is
generated close to the plasma frequency. The open diamonds and triangles
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labeled ’Noise storms’ in Fig. 4 were derived from the position measurements
at four frequencies of the centroids of two noise storms at the solar limb (data
from the Nançay Radioheliograph). The straight lines give least-squares fits
to the two data sets. The density profiles are quite similar to those inferred
from the visible-light-observations in dense coronal structures.

The empirical density profiles at heliocentric distances < 2 R� have slopes
close to those predicted by the isothermal hydrostatic model with T = (1−2)·
106 K, as indicated for different temperatures by the bundle of straight line
segments in the lower right corner of Fig. 4. The absolute densities differ by up
to three orders of magnitude between different coronal structures. While the
agreement with a static model is not a surprise, given that the flow speeds at
low altitudes are largely subsonic, it must be kept in mind that the measured
densities are average values, due to the line-of-sight integration of the optical
data and to the smearing out of the radio structures by coronal scattering
and the antenna beam.

Magnetic Field Quantitative information on magnetic fields is mostly de-
rived from Zeeman or Hanle effect measurements of spectral lines from rather
cool plasmas, in the photosphere or in prominences. Coronal emission lines are
too broad to allow Zeeman effect measurements. It is general use to infer the
topology of the coronal magnetic field from the extrapolation of the measured
photospheric field, using a current-free or a force-free model, and to constrain
the models by the observed plasma structure. Direct determinations of the
coronal magnetic field are only possible through the measurements of the
circular polarization of thermal free-free emission at centimetric wavelengths
and from observations of centimetric cyclotron emission in the coronal part
of active regions above sunspots. The latter technique reveals that magnetic
fields above 0.1 T exist in the T ≥ 106 K plasma at several 103 km above
sunspots in the photosphere (cf. reviews by Alissandrakis 1994; Klein 1992).

The magnetic field strength in the high corona, at altitudes between 2 and
9 R� above the photosphere, can be measured through the Faraday rotation
of a linearly polarized signal from interplanetary spacecraft or from cosmic
radio sources on its way through the corona (review by Bird and Edenhofer
1990). Measurements during weak solar activity show the field strength to
decrease as the sum of an ( r

R�
)−3 and an ( r

R�
)−2 term at heights > 2 R�

above the photosphere. This also fits in situ measurements at 0.3 AU.

Plasma Parameters in Solar Atmospheric Structures A summary of
typical plasma parameters in different atmospheric structures, inferred from
observations and semi-empirical modelling, is given in Table 1. Since the tem-
perature (T), density (of thermal electrons, ne, and neutral hydrogen atoms,
nH) and magnetic field values (B) are derived from imaging observations,
they are average quantities affected by the integration along and perpendic-
ular to the line of sight. The magnetic field values cited for the corona are



108 Pascal Démoulin and Karl-Ludwig Klein

Table 1. Typical averaged parameters of solar atmospheric structures

T [K] ne [m−3] nH [m−3] B[T]

Photosphere a

Bottom 6500 8 · 1019 1023 -

Sunspot 4000 5 · 1018 4 · 1023 b 0.3

Temp. min 4400 3 · 1017 2 · 1021

Chromosphere

Quietc 104 4 · 1016 5 · 1016 3 · 10−3

Plaged 104 3 · 1017 4 · 1017 3 · 10−2

Corona

Hole ≤ 106 1013 - 10−4

Active region 4 · 106 1016 - 10−2

Quiet 2 · 106 1014 - 10−3

Prominence 7000 1016 1017 10−3

fpe [s−1] fce [s−1] νep [s−1] νen [s−1] σ[(Ωm)−1]

Photosphere

Bottom 8 · 1010 - - 1010 90

Sunspot 2 · 1010 9 · 109 - 3 · 1010 2

Temp. min 5 · 109 - 108 25

Chromosphere

Quiet 2 · 109 9 · 107 106 4 · 103 103

Plage 5 · 109 9 · 108 107 3 · 104 103

Corona

Hole 3 · 107 3 · 106 1 - 7 · 105

Active region 9 · 108 3 · 108 102 - 6 · 106

Quiet 9 · 107 3 · 107 3 - 2 · 106

Prominence 1 · 109 3 · 107 106 8 · 103 8 · 102

a cf. Maltby et al. 1986, ApJ 306, 284
b Denser than the photospheric bottom because observed at a lower height
c cf. Vernazza et al. 1981, ApJS 45, 635
d cf. Lemaire et al. 1981, A&A 103, 160
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consistent with present knowledge, but are in general not directly measur-
able (with the exception of prominences: see Sec. 5.2). fpe and fce are the
electron plasma frequency and the electron cyclotron frequency, respectively.
Characteristic frequencies of momentum exchange are given for collisions of
electrons with protons (νep) and with neutral hydrogen (νen; after Melrose
and Khan 1989). The indicated electric conductivity σ is the minimum value
of those inferred from collisions of electrons with neutrals (photosphere; cf.
Stix 1991, ch. 8.1.2) and with protons. Photospheric electrons are supplied
by heavy atoms with low ionisation potential, while hydrogen is neutral. This
is why no electron-proton collision frequency is listed for the photosphere.

2.3 Subphotospheric Motions as Drivers of Solar Activity

The evolution of the plasma structures and the measurement of photospheric
magnetic fields show that the plasma β decreases with increasing height in the
solar atmosphere, and increases again at heights of solar wind acceleration.
The photosphere is a high-β plasma, where the pressure of the convected
gas concentrates magnetic fields in individual flux tubes. Sunspots are the
greatest and most conspicuous of them, but flux tubes of smaller spatial scale
form a network in the photosphere on the borders of convective cells with a
typical size of 30,000 km (supergranulation cells; B ≥ 0.1 T). It seems that
with increasing spatial resolution more concentrated magnetic fields become
visible in the “quiet” photosphere.

Material motions observed in the photosphere reflect processes in the un-
derlying convective zone. The density scale height in the convective zone
below the photosphere goes from ≈ 100 Mm at the bottom to 0.2 Mm at the
top. Compared to the height of the convective zone, this implies a density
ratio between the bottom and top of ≈ 106. This strong density stratification
(coupled to mass conservation) creates a strong asymmetry between upward
and downward motions: the ascending plasma must rapidly expand, then it
must overturn within a density scale height while the descending plasma must
rapidly contract and continue to fall down, becoming more concentrated and
more dense. It implies that the convective zone has gentle ascending motions
and strong concentrated downflows (just the opposite to the hot ascending
plumes in the earth’s upper mantle !). Convective motions concentrate mag-
netic fields in individual flux tubes, part of which may become buoyantly
unstable and rise through the photosphere. The emergence of magnetic flux
above the photosphere is visualized e.g. by “arch filament systems” (AFS).
They are formed by several dark arches with a blue-shifted summit and red-
shifted legs (e.g. Chou and Zirin 1988; Alissandrakis et al. 1990 Mein et
al. 1996). The observed Doppler velocities are direct signatures of emerging
magnetic loops with dense plasma leakage in the legs.

The coupling of the magnetic field in the atmosphere with material mo-
tions in and below the photosphere is the basic process driving the transport
of energy into the corona. Motional electric fields for typical photospheric
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(horizontal) speeds of 0.5 km s−1 and magnetic fields of ∼100 G provide a
Poynting flux of 5 · 104 Wm−2 (Einaudi and Velli 1994). The energy loss of
the corona ranges from several 102 Wm−2 in a coronal hole to 104 Wm−2 in
an active region. Therefore the Poynting flux is sufficient to explain coronal
heating and solar wind acceleration. However, the power supplied to the ac-
tive region corona (typical photospheric surface 1015 m2) is 1020 W, which
is not sufficient to power a conspicuous flare. A flare requires energy storage
during up to a day, presumably in the magnetic field configuration.

3 Why an MHD Description of the Corona?

The convective zone governs the physics in the corona both by successive
emergences of magnetic flux and by imposing horizontal photospheric mo-
tions. The coronal magnetic field and plasma are forced to evolve according
to the time-dependent boundary conditions imposed at the photospheric level
by the convective zone. This boundary driving is however slow at the bottom
of the corona (few km.s−1) compared to the sound and Alfvén speed (see
Table 2) and it is fundamentally different from the super Alfvénic driving
(MA ≈ 10) of the terrestrial magnetosphere by the solar wind. The sub-
photospheric driving induces a quasistatic evolution of the coronal magnetic
field which is interrupted from time to time by dynamical events. Part of the
free-energy is either dissipated directly or stored for a short duration and
released frequently in small events giving an “average” coronal heating. The
other part of the free-energy is stored on a longer time (hours to days) and
it is liberated only when a global instability of the magnetic configuration
occurs; it leads to flares and CMEs.

A second major difference between the terrestrial magnetosphere and the
solar corona is the plasma densities; they imply a collisionless plasma for the
magnetosphere while in the corona the frequency of collisions is much higher
than the bounce frequency (see Table 2). This permits to use MHD equations
for analysing the large-scale magnetic configurations in the corona and their
evolution. A third difference is the importance of the magnetic field in the
physics involved: while the low corona is fully dominated by the magnetic field
(low β plasma, see Table 2) particle pressure cannot always be neglected in
the magnetosphere (see e.g. Fontaine 2000).

On top of these three main physical differences is the weight of the observ-
ing technics: localized measurements of particle distribution functions, fields
and currents versus remote sensing imaging and spectrographic observations
measuring density, velocity and magnetic field averaged over the instrumental
response function. The MHD description of the corona attempts to under-
stand the evolution of magnetic structures on the large spatial scales accessi-
ble to telescopes, and to infer where the macroscopic approach breaks down,
i.e. where energy will eventually be released. The basic boundary conditions
are magnetic fields and flow fields, B and v, measured at the photospheric
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Table 2. Order of magnitude for the physical parameters in the low solar corona.
The numerical values (third column) are given for a temperature T = 106 K, a
density N = 1015 m−3, a magnetic field B = 10−2 T (and ln Λ = 20) which are
typical for the low corona. Variation from these values can be easily computed by
using the parameter dependence reported in the fourth column with the quantities
T, N, B normalized to the above values. (From Chen 1984, NRL Memorandum
Report 1977; Priest 1982; Stix 1991)

parameter symbol typical value dependence

Lengths

active region LAR 108 m

scale height Hg 5 · 107 m T

supergranule LSG 3 · 107 m

sunspot LSS 107 m

granule LG 106 m

Collision mean free path λee ≈ λep ≈ λpp 2 · 105 m T 2/N

Plasma skin depth 2 · 10−1 m Ne
−1/2

Proton gyro radius rp 10−1 m
√

Tp/B

Debye length λD 2 · 10−3 m
√

Te/Ne

Electron gyro radius re 2 · 10−3 m
√

Te/B

Times

Solar cycle 22 years

active regions, filaments 107 s

CMEs 105 s

Flares: Main phase 104 s

Impulsive phase 3 · 102 s

Hard X-rays spikes 10−1 s

Radio spikes 10−2 s

Frequencies

Electron gyrofrequency fce 3 · 108 s−1 B

Plasma frequency fpe 3 · 108 s−1 √
Ne

Proton gyrofrequency fcp 2 · 105 s−1 B

Electron-electron collision rate νee 50 s−1 NeTe
−3/2

Electron-proton collision rate νep 30 s−1 NeTe
−3/2

Proton-proton collision rate νpp 1 s−1 NpTp
−3/2

Bounce frequency for electron VTe/LAR 4 · 10−2 s−1 √
Te

Bounce frequency for proton VTp/LAR 10−3 s−1
√

Tp
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Table 2. Continued

parameter symbol typical value dependance

Velocities

particle beams up to 3 · 105 km s−1

solar wind ≈ 700 km s−1

jets few 100 km s−1

quiescent coronal evolution 1− 10 km s−1

photospheric motions 0.1− 1 km s−1

Electron thermal speed VTe 4 · 103 km s−1 √
Te

Alfven speed VA 103 km s−1 B/
√

N

Sound speed Cs 2 · 102 km s−1
√

T

Proton thermal speed VTp 102 km s−1
√

Tp

Plasma parameters

Plasma parameter Neλ
3
D 107 Te

3/2Ne
−1/2

Plasma beta β 4 · 10−4 NB−2T

Magnetic diffusivity η 1 m2 s−1 T−3/2

level. Magnetospheric diagnostics, on the other hand, provide local parame-
ters from which the global configuration must be inferred. The difficulty to
do this adequately with a kinetic approach is such that even in the magne-
tosphere MHD is frequently used in a global approach (e.g. Birn et al. 1996;
Hesse et al. 1997). Obviously, in both fields kinetic theory, or even more a
particle approach is needed when the detailed process of energy release is to
be analyzed.

Even when the object of the study is the global understanding of the
physical system, the “macroscopic” equations used, as well as the concepts
behind, are different. The long standing controversy on whether one should
mainly use MHD with B and v for the primary variables, or rather use E and
j leads to many misunderstandings between the two communities. They are
still well alive as the recent debate between Parker (1996, 1997) and Heikkila
(1997) shows.

MHD equations express the conservation of fundamental macroscopic
quantities (mass, impulsion and energy). They are derived from the Boltz-
mann equation by integrating over the velocity space, so there is some lost
information (see e.g. Parker 1994; Heyvaerts 2000). In the study of solar
atmospheric structures some simplifying approximations are well justified:
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nonrelativistic regime, fluid approach (enough particles or dominant mag-
netic field), evolution time much longer than the cyclotron period of particles,
absence of large-scale field-aligned potential drops. Some are more question-
able, for example, an evolution time much larger than the thermalisation time
of the particles. Moreover coefficients (like viscosity and resistivity) and the
equation of state need to be specified in MHD equations. They are derived
from kinetic theory in “ideal” cases (e.g. local thermal equilibrium) which are
not necessarily valid in the applications. The relatively small mean free path
of particles compared to global sizes (see Table 2) means that the Coulomb
collisions are so frequent in the low corona that MHD may still be a good
first approximation to study the processes involved.

One of the most troublesome parts of MHD may be the treatment of the
relationship between current density and electric field. This is done through
a generalised Ohm’s law derived basically from the momentum equation of
electrons. In the study of equilibrium configurations and their slow, quasi-
static evolution in the coronal low β plasma an order of magnitude estimation
of the terms leads usually to simplify this equation to retain only the resis-
tive term ( j = σE, see e.g. Priest 1982). This is further justified by Parker
(1994, Chapter 2) who showed that only some terms of the generalised Ohm’s
law have an effect on the magnetic field evolution and that such terms are
usually negligible. In most analyses, including numerical simulations, the elec-
trical conductivity reduces to a scalar. This is clearly an oversimplification
which is imposed by the limited resources of present computers. Even using
super-computers, the scalar conductivity used needs to be reduced by many
orders of magnitude compared to the estimated coronal one if one wants to
study a global magnetic configuration. This may look very far from coronal
physics, but it is less than one might think. There are several studies on mag-
netic reconnection and MHD turbulence which show that the energy release
depends only weakly (logarithmic dependance) on the magnitude of the dis-
sipative coefficients (see e.g. Biskamp 1993). In fact, with lower dissipation
coefficients, the energy simply cascades to smaller scales, where it is finally
dissipated. The input of the energy at large scales is basically fixed by the
global evolution of the system, e.g. a large scale instability.

There is an important restricted version of the MHD equations, so-called
ideal MHD, which is free of the problems described above and can still give
several hints on the magnetic-field physics. In ideal MHD both viscosity and
resistivity are set to zero (or more precisely both Reynolds numbers are infi-
nite). In the corona, one can even get a step further and neglect the plasma
pressure (so no state equation is needed). This is a useful over-simplification
because of the low β plasma and the high Reynolds numbers in the low
corona. This simplified version of MHD is self-consistent (no need to define
any plasma coefficient). This framework provides very valuable insight in how
the whole magnetic system evolves. In particular it permits to understand
how the energy is stored, when the system becomes globally unstable, so
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when the stored energy can be released. Moreover, it shows also where cur-
rent sheets (or layers) are formed, so the spatial locations where magnetic
energy can be efficiently transformed (by reconnection). The results can be
directly tested with observations (Sect.4).

The ideal MHD approach shows also its own limits: the MHD equations
are obviously invalid at the current layers. There, locally, a kinetic approach
is required, but it needs to be coupled to the global configuration described
by MHD, because both the spatial location and the intensity of the current
layers are determined by the global evolution of the system. The resistive
MHD can provide the global energy budget (see above), but cannot describe
the energy release itself, for example the energization of particle beams. So for
a full understanding of the processes both approaches, coupled together, are
needed; this is a huge challenge ! At present there are still many unresolved
questions on storage and sudden release of the magnetic energy, that MHD
equations, even simplified ones, will still be of great help to understand the
various solar observations.

4 Magnetic Energy Conversion
in the Solar Atmosphere

The transformation of magnetic energy takes various forms in the solar at-
mosphere ranging from the de-stabilisation and ejection of a fraction of the
corona down to the very small events implied in quasi-continuous coronal
heating. Magnetic reconnection is thought generally to be at the heart of the
energy conversion processes. In the following we emphasize the overall topol-
ogy of the coronal magnetic field, as a basic concept to understand where
energy could be released in a highly conductive medium. We do not discuss
how energy is released. The relevant mechanisms involve sub-telescopic scales
and non-MHD treatments, but they act in a macroscopic environment which
can be realistically described by the MHD approach.

4.1 Magnetic Topology

Under typical coronal conditions the magnetic field is nearly force-free and
frozen into the plasma almost everywhere in active regions on the Sun. An
exception is separatrices which are magnetic surfaces where the magnetic field
line linkage is discontinuous (see Fig. 5). A particularly important location for
reconnection (in a classical view) is the intersection of two separatrices, called
a separator. Most of the reconnection theories locate the energy release at or
in the close vicinity of a separator, because a current sheet forms generally at
a separator when the magnetic configuration evolves. The simplest example
is a 2-D magnetic configuration with a neutral X-point (which is a particular
case of separator) as in Fig. 5b. Adding a third perpendicular component
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Fig. 5. Basic magnetic topology in a quadrupolar configuration. In (a) the separa-
trix (thick line) is tangent to the boundary at the point named “O” (it is a “bald
patch”), while in (b) two separatrices intercept at an X point. In both cases the
connectivity of field lines (thin lines) is discontinuous at the separatrices (as empha-
sis by the labeling of the foot-point of field lines). Shearing photospheric motions
(thick arrows) induce the formation of a current sheet all along the separatrix in
(a) (resp. separatrices in (b)). (From Vekstein and Priest 1992)

of the field, which is invariant in this perpendicular direction (so-called 2.5-
D configurations), yields a new possibility for the current sheet formation.
They can be formed now along the whole separatrices even when smooth
shearing flows are present at the photospheric boundary (e.g. Zwingmann
et al. 1985). This may occur in two distinct cases (see Fig. 5). Firstly when
there is an X-point in the poloidal field (Low and Wolfson 1988; Finn and
Lau 1991; Vekstein and Priest 1992). Secondly when there are field lines
tangent to the photospheric boundary (Wolfson 1989; Low 1992; Vekstein et
al., 1992). These locations of the photospheric inversion line where field lines
are tangential and upward curved are called for brevity “bald patches” (BPs)
by Titov et al. (1993).

In 3-D generic cases the separatrices generalize directly the above two
classes. Separatrices are formed by field lines, which thread either null points
or bald patches. Current sheets are thought to form along the separatrices
when arbitrary motions are imposed at the photospheric plane (e.g. Aly 1990;
Lau 1993). The generalization of 2-D null point to 3-D has received most of
the attention because it defines a clear topology, both locally around one null
and globally (the separator being the field line linking two nulls).

From observations, several flares have magnetic nulls in their reconstructed
magnetic configuration but the relation of magnetic nulls with flares is not
systematic (Démoulin et al. 1994). This was a first motivation for the gener-
alization of separatrices to quasi-separatrix layers (QSLs). A second motiva-
tion, more theoretical, is summarized in the next paragraph. The notion of
QSLs is related to some recent developments of 3-D magnetic reconnection
theory. QSLs are the generalization of separatrices to magnetic configurations
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with a non-zero magnetic field strength everywhere in a region (Priest and
Démoulin 1995). By definition the magnetic connectivity in QSLs enormously
changes with slight variations of position of the field line footpoints. QSLs
play a similar role as true separatrices, i.e. QSLs as well as separatrices are
responsible for generating strong current layers and magnetic reconnection is
expected even in plasma with a high magnetic Reynolds number (Démoulin
et al. 1996a).

The need to generalize the concept of separatrices to QSLs is illustrated
here with a particular example. Let’s consider a quadrupolar magnetic con-
figuration invariant in one direction, called y, like in Fig. 5b. The intersecting
separatrices define four cells of connectivity. However, when the magnetic
configuration has a finite extension in the y direction, there are no longer
separatrices, in the cases with no bald patches and with a non-vanishing By

component (so no magnetic null point). The structural instability of separa-
trices, when going from 2.5-D to 3-D, was first pointed out by Schindler et al.
(1988) in the case of twisted magnetic configurations (with applications to the
magnetospheric tail). However this structural instability is no longer present
when the notion of separatrices is generalized to those of QSLs (Démoulin et
al. 1996b).

4.2 Large Scale Magnetic Restructuring: Coronal Mass Ejections

Coronal Mass Ejections (CMEs) have been extensively observed in white light
coronagraphs on Skylab, SOLWIND, SMM (Solar Maximum Mission) and
presently with SOHO. Solar wind and CMEs are the two main hydromagnetic
phenomena which eject plasma and magnetic fields out of the sun. A CME
destabilizes a large part of the corona: its extension is usually of the order
of one solar radius when it is first discernible in coronograph images (and its
size in the interplanetary medium increases nearly linearly with distance from
the sun). The ejected mass in one CME is typically of the order of ≈ 1012 kg,
with a kinetic and gravitational energy of ≈ 1024 − 1025 J. The velocities are
typically a few hundred km.s−1up to one thousand km.s−1(this upper value
has the magnitude of the Alfvén velocity). While a flare is often observed in
conjunction with a CME, it seems to start after the time when the backward
extrapolation of the CME trajectory intersects the photosphere. The energy
released in the flare is variable, but can be of the same order as the kinetic or
potential energy of the CME. The relative timing of CMEs and flares shows
that the mass ejection is not the consequence of the explosive energy release
during the flare, but constitutes a specific manifestation of coronal magnetic
field de-stabilisation.

A long standing question during the past thirty years dealt with the pos-
sibility to open a magnetic configuration. On one hand, the coronal plasma
observations seem to indicate such opening, on the other hand the models
have difficulties to explain such phenomena. The coronal magnetic Reynolds
number being huge (1012–1014) on large scales, an ideal instability is more
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likely to drive the process initially. This problem was difficult to solve and it
is only recently that a consensus has grown. A common result to all present
numerical simulations is that the stored energy in a force-free field cannot
exceed the energy of the associated open field (with the same photospheric
magnetic-flux distribution; this provides a numerical validation to the con-
jecture of Aly (1991) and Sturrock (1991).

An important step in the analysis of the problem has been to consider ax-
isymmetric magnetic configurations around a sphere rather than a cartesian
geometry invariant by translation. The main difference is in the property of
the open-field: it has a finite energy in the axisymmetric geometry while its
energy is infinite in the cartesian geometry (even per unit of length in the in-
variant direction). Then photospheric shearing motions can drive the system
to the open state in a finite time (compared to an infinite time in the carte-
sian 2.5-D geometry). This has been shown both by analytical (Lynden-Bell
and Boily 1994; Aly 1995; Sturrock et al. 1995; Wolfson et al. 1996) and by
numerical (Mikić and Linker 1994) approaches. The inclusion of resistivity
allows the formation and ejection of a twisted flux tube. The actual precise
amount of resistivity seems to play a minor role (see Sect. 3). The inclusion
of solar wind makes the eruption more energetic (Linker and Mikić 1995).
These works represent an important step compared to the cartesian case. In
particular the field opens after a finite time, but this time, around 30 days
with differential rotation, is too long compared to the observed rate of CMEs
(about 1 per day).

Only recently has the analysis of the full 3-D problem become possible,
due to the development of powerful numerical techniques and computers.
Slow photospheric twisting motions applied to a simple bipolar field force
the configuration to expand upward, initially at a speed lower than the driv-
ing speed, but later much faster (a non negligible fraction of the Alfvén speed;
Amari et al. 1996). Because the twisting motions have been applied only to
part of the photospheric field, the configuration tends to a partially open
field in a finite time. The amount of twist needed, of about one turn, is more
compatible with the observations than in the previous axisymmetric config-
urations. Finally, the full 3-D system has more freedom than the axisym-
metric one: in particular the twisted flux tube can push the untwisted field
lines aside, while in an axisymmetric system they would be forced to become
open, too. This effect facilitates the partial opening of the field. This opening
phenomenon has been found to occur in various configurations (Amari et al.
1997a).

4.3 Magnetic Field Evolution
and Energy Dissipation During Flares

Flares are observed in the whole spectrum ranging form radio to γ-rays. There
are a rich variety of magnetic configurations; models have to explain how and
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Fig. 6. Schematic diagram representing the characteristics of supermagnetosonic
regime in flares together with the observational consequences. This regime is most
likely to occur in the early phase of the flare when reconnecting fields are strong.
Solid lines indicate boundaries between various plasma regions, while dashed lines
indicate magnetic field lines. Arrows represent the plasma flows. (From Forbes and
Acton 1996)

where magnetic energy is released in solar flares and in particular the exist-
ing link between chromospheric flare ribbons sometimes separated by more
than 100 Mm. “Post” flare loops are seen to form between the flare ribbons
during the development of most flares (see Schmieder 1992 for a review and
Malherbe et al. 1997 for a time evolution of the phenomena) suggesting a
model with reconnection (e.g. Forbes and Acton 1996; van Driel-Gesztelyi
et al. 1997). Many observational studies in different wavelengths show that
flares, and even less intense coronal phenomena, involve interactions between
coronal magnetic structures (see e.g. Machado et al. 1988; Shimizu et al. 1994;
Hanaoka 1995; van Driel-Gesztelyi et al. 1996). Figure 6 gives a summary of
how the reconnection process is envisioned and how it may affect different
regions of the solar atmosphere.

Since the instantaneous transport of energy from the convective region
and the photosphere is not sufficient to power a flare, energy storage is a
necessary ingredient of flare models. For example, it has been argued that
current sheets can store enough magnetic energy to power a flare (Somov 1992
and references therein). At some point in the evolution, this current sheet
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Fig. 7. Example of the correspondence between the flare ribbons and the trace of
computed QSLs in a simple flaring region (a) Observational data: Off-band Hα
flare kernels (hatched regions) and longitudinal photospheric field (positive and
negative values are drawn with solid and dashed lines respectively) (b) Trace of
the QSLs (thick lines) and regions where the vertical current density is greater than
10 mA m−2. The coronal links between Hα brightenings are given by four kinds of
field lines (the Hα kernel d is linked to local magnetic connections which are not
represented). (c,d) Perspective view of Fig. 7b showing the coronal linkage at the
borders of QSLs with field lines drawn as surfaces. (From Démoulin et al. 1997)

becomes unstable and turbulence develops increasing the plasma resistivity.
Then, the stored energy is rapidly released as a flare (e.g. Heyvaerts et al.
1977). It has instead been argued that reconnection tends to occur at a rate
imposed by the evolution of the large-scale magnetic field (e.g. Priest and
Forbes 1992). In this latter case, the current in the sheet is always small and
magnetic energy is instead stored in smooth field-aligned currents, such as a
twisted flux tube, at a spatial scale that gives a negligible role to the resistive
term (length-scale typically 1-10 Mm). In this evolution an ideal instability
or non-equilibrium occurs forcing reconnection to take place at the separator
(e.g. Priest and Forbes 1990). Another possibility is that the field-aligned
currents are formed by photospheric or convective motions and then carried
towards the locations of current sheets where the stored energy can be rapidly
released. This list of possible solar flare models is far from being complete,
but it shows instead that we still need to combine a large set of observations
with adequate modeling of the magnetic field in a search about hints on the
energy release process.
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In order to model an observed region we need to compute the magnetic
field from the photosphere to the corona. Important difficulties (linked to
the presence of concentrated currents and of separatrices) are present in 3D
force-free field computations using observed magnetograms. Currently they
are still not fully solved (Amari et al. 1997b; Mc Clymont et al. 1997). Present
successful extrapolations, in terms of a good correspondence between the
observed coronal plasma structures and the computed field lines, have been
realized for moderate magnetic shear. This kind of configuration provides the
most accurate test of flare models in terms of localization of the magnetic
energy release in the computed magnetic configuration.

The role of magnetic reconnection in flares has been tested using a variety
of photospheric, chromospheric and coronal observations. By analysing sev-
eral flares Démoulin et al. (1997), Mandrini et al. (1997), and Schmieder et
al. (1997) have shown that Hα (or UV) flare brightenings are located on the
intersection of QSLs with the chromosphere and that they are connected by
magnetic field lines which trace the flare loops observed in soft X-rays. QSLs
are formed in a variety of observed magnetic configurations, ranging from
quadrupolar regions (an example is given in Fig. 7) to bipolar ones with an
“S”-shaped inversion line and even in bipolar regions with a nearly potential
field and an almost straight inversion line. The first case is a direct exten-
sion to 3-D of a 2-D magnetic configuration with an X-point (as used in 2-D
reconnection models), while the second and third seem at first sight closer
to a simple arcade model ! There is a wide range for the thickness of QSLs.
This thickness is determined by the character (bipolar or quadrupolar) of the
magnetic region and by the sizes of the photospheric field concentrations; the
QSL thickness can be very small, ranging from 106 m down to zero (in the
case of separatrices). Concentrated currents have been found in the observa-
tions; they are located at the borders of the QSLs (see Démoulin et al. 1997
and references therein). Moreover, two current kernels of opposite sign, linked
by coronal field lines, are usually found at the photosphere. This indicates
that the energy is presumably stored in the magnetic field associated with
these field-aligned currents.

The above results give some confidence on the development of 3-D mag-
netic reconnection involving QSLs. They show that one needs to go beyond
the classical generalization to 3-D of 2-D magnetic null points and associated
separatrices. Magnetic reconnection occurs in more general circumstances
when small scale lengths are formed in the system by a drastic change in the
field line linkage. Magnetic configurations with field lines tangential to the
photospheric boundary (at bald patches) can also lead to the formation of
thin current layers (Sect.4.1). A first observational evidence of such a case
has just been found (Aulanier et al. 1998c). It points to the need for the
development of 3-D reconnection models in such a case.
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4.4 Bright Points

X-ray bright points (XBPs) were first observed in images obtained by a
rocket-borne grazing-incidence soft X-ray telescope (van Speybrock et al.
1970) and their characteristics were analysed in detail during the Skylab
mission (e.g. Golub et al. 1977). They appear as diffuse clouds of typically
20 Mm diameter with a central bright core. They are uniformly distributed
over the solar surface, with about 200 being present simultaneously and 1500
being born each day. Their lifetimes vary between 2 and 48 hours, with a
mean value of 8 hours, and they are located above pairs of opposite magnetic
polarities observed in the photosphere outside active regions (e.g. Harvey et
al. 1994). Nolte et al. (1979) observed impulsive brightenings and rapid de-
cays in a small sample of XBPs. They suggested that the fluctuations were
driven by episodic heating superimposed upon a continuous input of energy.
The cause of XBP variability is not yet clear, although some results indicate
that the XBP brightenings are similar to normal flares, only smaller in energy
(e.g. Strong et al. 1992), and may also involve beams of nonthermal electrons
(Kundu et al. 1994).

Based on Skylab results, XBPs were originally considered the primary
coronal manifestation of emerging photospheric flux. However, subsequent
studies gave contradictory results concerning the nature of XBPs. Martin et
al. (1985) suggested that cancelling features could be associated with XBPs.
On the other hand, Golub et al. (1986) found that XBPs are more likely
associated with emerging than with cancelling flux. More recently Webb et
al. (1993), analyzing X-ray data from rocket flights coordinated with full-
disk and time-lapse magnetograms, reached the conclusion that two-thirds
of XBPs lie above decaying or cancelling magnetic features. Apart from the
controversy, the important point to draw from these results is that the ap-
pearance of an XBP in the corona is independent of the type of feature seen
in the magnetogram, as long as it is a bipole.

Parnell et al. (1994) showed that the analysed X-ray bright loops can be
interpreted as being reconnected magnetic loops (computed from a simplified
photospheric magnetogram). The process is driven by approaching magnetic
flux-tubes of opposite polarity (see Parnell 2000 for further explanations).
An MHD simulation of Dreher et al. (1997) confirms the formation of cur-
rent sheets in such configurations and the subsequent magnetic reconnection.
Mandrini et al. (1996) put forward the evidence of the role of magnetic re-
connection in an XBP by using a direct extrapolation of the observed pho-
tospheric magnetic field and the QSL approach. The extrapolated field lines,
with photospheric footpoints on both sides of QSLs, match the observed chro-
mospheric and coronal structures (arch filament system, XBP and faint X-ray
loops). Furthermore the calculated QSL is very thin (typically less than 100
m) during the lifetime of the XBP, but becomes much thicker (≥ 104 m) after
the XBP has faded. This XBP shows an example of magnetic reconnection
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forced by emergence and displacement of a new bipole in an old magnetic
field region, a situation which is also frequent in flares.

4.5 Coronal Heating

Energy is continuously supplied to the solar corona to maintain its tempera-
ture above 106 K. Since the major discovery of the existence of this very hot
plasma in the 1940’s, several mechanisms have been proposed. Nowadays a
consensus has nearly emerged on the origin of the energy (which is thought
to be injected at the photosphere as a Poynting flux) and on its mediator
(namely the coronal magnetic field). The way this energy is dissipated in
the corona is, however, still strongly debated (see e.g. Hollweg 1990; Gómez
1990; Einaudi and Velli 1994, for reviews). Two limiting cases have been in-
vestigated in detail: the case where the excitation time is comparable to or
smaller than the Alfvén transit time of the coronal loops and the case where
it is much larger. For the first case, a high-frequency excitation at the lower
boundary, the dissipation of MHD waves by phase mixing (Heyvaerts and
Priest 1983) or resonant absorption (Goossens 1991) is a prime candidate
to heat the corona. For the second case, i.e. a low-frequency excitation, the
formation and dissipation of thin current sheets has been proposed (Parker
1972). Because of the high magnetic Reynolds number of the corona, dissi-
pation is very small on the typical scale lengths of the corona, and MHD
turbulence is likely to be important both in the waves (e.g. Inverarity and
Priest 1995) and quasi-static (e.g. Heyvaerts and Priest 1984) approaches.
For example, granular and super-granular convective motions introduce per-
turbations on scales of ≈ 1 Mm and ≈ 30 Mm with time scales of ≈ 103

and ≈ 105 s, respectively. The dissipation of the perturbations on such time
scales, with a classical resistivity, requires scale lengths ≈ 10−5 times smaller
than the sizes of the convective cells for both types of convection (and so
scale-lengths in the range 10–300 m). Clearly an efficient way to create very
fine scale lengths is required.

The creation of current sheets naturally introduces fine scale-lengths in a
magnetized plasma. Starting from a simple uniform field which is braided and
twisted in an arbitrary way by photospheric motions, Parker (1972) argues
that current sheets may be formed in ideal MHD conditions because there is,
in general, no neighbouring equilibrium compatible with the imposed bound-
ary conditions. This work stimulated a burst of research and controversy in
the field (e.g. Aly 1987; Antiochos 1987; Zweibel and Li 1987; van Ballegooi-
jen 1988; Longcope and Sudan 1992; Longcope and Strauss, 1994). Parker
provided a formal example of the formation of a surface of tangential discon-
tinuity when a layer of force-free field is locally compressed (Parker 1990),
and presented a comprehensive development of the theory of the formation
of discontinuities (Parker 1994).

Numerical experiments have demonstrated how quickly thin current con-
centrations tend to form. van Ballegooijen (1986) analysed the response of
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an initially uniform field to randomly phased boundary flows (modeling tur-
bulent photospheric flows). Because of the non-linearity of the ideal MHD
equations, the energy cascades to small scale lengths. van Ballegooijen (1988)
showed that, even with simple boundary flows, the photospheric displacement
of field-line footpoints contains fine structures with scale-lengths that become
finer with time. These short scale-lengths are transferred to the coronal field
and the electric-current density builds up in time. This has been confirmed
by an ideal MHD simulation of Mikić et al. (1989) and by a resistive MHD
simulation of Longcope and Sudan (1994) which show that current layers are
formed with a thickness that decreases rapidly with time. Thin current layers
are also formed during the dynamical evolution after the loss of equilibrium
(Longcope and Sudan, 1992). Such non-equilibrium situations occur typically
when the twist is between one and two turns (Longcope and Strauss 1994;
Gómez et al. 1995).

X-ray observations show that the coronal plasma is highly inhomogeneous;
this is present in the consequences of many models cited above. The spatial
distribution of the heating is thought to be even more inhomogeneous than
the present X-ray observations show (with a spatial resolution ≥ 0.7 Mm).
Martens et al. (1985) for example have analysed a steady X-ray flaring loop-
like structure and found a very hot component (T ≈ 107K); by modelling
the energetics of the loops, they deduced that this component is present only
in a tiny fraction (≈ 10−3) of the volume and may be formed by about 30
current layers.

Curiously, while the heating is believed to be of magnetic origin, the
regions with the highest magnetic field (above sunspots) are not bright in
X-rays (e.g. Sams et al. 1992; Schmieder et al. 1996). Moreover, Metcalf et
al. (1994) find no correlation between the locations of bright X-ray loops and
the sites of strong photospheric currents! These observations tell us that nei-
ther the magnetic field nor the observable electric current are determining
factors for the level of heating. The X-ray bright loops are rather observed
around sunspots and above plages where the photospheric magnetic field is
highly fragmented into thin flux tubes (see e.g. the review of Stenflo 1994).
Démoulin and Priest (1997) show that such thin flux tubes imply the pres-
ence of a large number of very thin QSLs in the corona. A main parameter
is the ratio between the magnetic flux located outside the flux tubes to the
flux inside. The thickness of the QSLs is approximately given by the distance
between neighbouring flux tubes multiplied by the ratio of fluxes to a power
between two and three (depending on the density of flux tubes). They con-
clude that the fragmentation of the photospheric magnetic field stimulates
the dissipation of magnetic energy in the corona.

Even restricting the photospheric excitation to low-frequency, there are at
least five ways to form fine structures in the coronal magnetic field. Firstly, if
the field topology is complex, there is current-sheet formation (see Sect.4.1).
Secondly, fine structures can be introduced at the boundary because the link
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between the velocity pattern and the footpoint displacement is strongly non-
linear: well-behaved flows produce fine structures with scale-lengths decreas-
ing exponentially with time in the footpoint displacement (van Ballegooijen
1988). Thirdly, the continuous braiding by photospheric motions of coronal
field can force the magnetic system to reach a non-equilibrium (e.g. Parker
1972; Berger, 1991; Longcope and Strauss 1994). Fourthly, the intrinsic non-
linearity of the MHD equations introduces a cascade of energy to fine scales
(e.g. Heyvaerts and Priest 1984; Dmitruk and Gómez 1997; Georgoulis et al.
1998). And, finally, the fragmentation in photospheric flux tubes introduces
a very severe mapping distortion in the field-line linkage and creates many
QSLs (Démoulin and Priest 1997). In conclusion we are far from a consensus
on the mechanism of coronal heating ! Moreover, while there are several ways
to form fine scale-lengths, the dissipation at these scales certainly requires
more than the traditional MHD treatment. The recent discovery of different
electron and ion temperatures provides a new diagnostic tool to study the
relevant processes.

5 Prominences as Tracers
of Coronal Magnetic Field Structures

5.1 Main Characteristics

Prominences (viewed at the limb as in Fig. 3), or filaments (viewed on the
disk in Fig. 8a), are elongated structures of cold material (T ≈ 7000 K)
suspended in the hot corona (T≈ 106 K). They must be supported against
gravity because their plasma is typically one hundred times denser than the
coronal medium and because they extend in height over more than one hun-
dred times the gravitational scale height of their cold plasma. Although most
observations are carried out in lines of neutral atoms, the high collision rate
between ions and neutrals effectively forces the neutrals to follow the ions (the
relative velocity is only of a few m s−1 as shown by Mercier and Heyvaerts,
1977). Coronal magnetic fields are the usual explanation for prominence sup-
port. In fact the magnetic field has even a much broader impact in the physics
of the prominences: it controls both the plasma dynamics (via the momentum
equation) and thermodynamics (via the thermal conduction and the heating).
This key role is not always recognized at its right level because the major-
ity of observations focuses on the plasma. Furthermore, a direct evidence for
importance of the magnetic-field is less compelling in prominences than in
other phenomena like arch-filament systems, surges and coronal loops. Coro-
nal loops consist basically of hot plasma which fills the magnetic flux tubes,
while arch-filament systems and surges are dynamic plasma structures where
dense plasma is forced to move along field lines. In both cases the plasma
traces the magnetic flux tubes. At the opposite, during the quiescent phase
of prominences the cold plasma fills only the extreme lower part of dipped
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Fig. 8. (a) Example of a filament observed in the Hα line-center. Arrows point to
particular structures (filament foot or chromospheric fibrils) (b) Model of the mag-
netic configuration computed from the photospheric magnetogram (represented by
isocontours). The dark lines correspond to the lower bottom of the 3-D distribu-
tion of dipped field lines. (c) Side-view of the prominence model. The dark lines
correspond only to the bottom of the dips which are supposed to be filled by dense
plasma. Even in such a model, the twisted configuration is not apparent (see text).
(d) Photospheric magnetogram from MDI/SOHO. (From Aulanier et al. 1998)

field lines (a view still under debate!); it is then difficult to relate directly
the morphology of the cold plasma to the presence of the magnetic field. It is
only when a detailed analysis of the various observations is realized in parallel
with a theoretical approach that a coherent picture emerges.

This short description of filaments shows that they are very peculiar struc-
tures in the solar atmosphere both from the plasma and magnetic point of
view. Still nowadays, the origin and the thermal stability of the cold plasma
is a matter of research. Their magnetic structure is also still a matter of
debate, partly because measurements of magnetic fields inside prominences
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yield counter-intuitive results (see below). There is in fact growing evidence
that filaments are associated with the strongest non-potentiality of the coro-
nal magnetic field. With the large set of observational techniques available in
filaments, they are instructive “probes” of the more complex coronal struc-
tures.

5.2 Results from Magnetic-Field Measurements

Prominences are always found above lines where the vertical component of
the photospheric magnetic field reverses sign. They are embedded within
regions, called corridors or filament channels, which are nearly free of vertical
magnetic field flux except small parasitic polarities (e.g. Martin 1990). They
are also characterized on either side by the presence of chromospheric fibrils
nearly aligned with the inversion line, indicating a high magnetic shear (e.g.
Rompolt 1990).

In prominences the Zeeman effect only allows the measurement of the
longitudinal component of the magnetic field (see Kim 1990 and references
therein). Radio wavelengths provide information on the field strength (e.g.
Apushkinskii et al. 1990). The Hanle effect gives the three components of
the field (and the electron density) from the polarization measurements in
two spectral lines (e.g. Bommier et al. 1994). The compatibility of the results
obtained by these three independent methods and by different groups of
observers have strongly contributed to validate the results (see Leroy 1988,
1989; Kim 1990).

One of the main results of Hanle measurements is that the prominence
field has the opposite direction to the one expected from extrapolation of
photospheric measurements (e.g. Leroy et al. 1983). Not only is the field
component orthogonal to the prominence opposite to the field of a simple
arcade (referred to as inverse configuration), but also the field component
parallel to the prominence is opposite to those of an arcade that would have
been sheared by differential rotation! This has been shown after a detailed
analysis because twin solutions, symmetrical with regard to the line of sight,
exist with optically thin lines and right angle scattering (known as 1800 am-
biguity). A large majority of prominences belong to the inverse type (75%
in Leroy et al. 1984, 85% in Bommier et al. 1994 and greater than 90% in
Bommier and Leroy 1998).

It is now well accepted that the magnetic field in prominences is nearly
horizontal, while compatible with a slight magnetic dip (Bommier et al. 1994).
The magnetic field strength is nearly homogeneous (Leroy 1989) on the scale
of a few arc seconds, but shows a statistical increase of strength with height
which is compatible with a large-scale dip configuration (e.g. Leroy et al.
1983).



Structuring of the Solar Plasma 127

5.3 Models for Prominence Support

The kind of magnetic configuration supporting filaments is still a matter of
debate because the observations of the magnetic field are only partial (at
the photosphere and in the prominence). Because filaments are long lived
structures (weeks to months) there is clearly the need for a stable support.
The most plausible one is the presence of a magnetic dip where dense plasma
can be caught to form a filament (Kippenhahn and Schlüter 1957). There are
three basic configurations which satisfy this constraint.

In arcade-like magnetic configurations a dip cannot be present in a force-
free 2.5-D arcade, since the field lines become only flatter as the magnetic
shear increases (Amari et al. 1991). This is however possible in 3-D with an
overlying arcade compressing locally the central-part of an underlying sheared
arcade (Antiochos et al. 1994). The latter gives mostly an inverse-polarity
prominence with a magnetic field nearly aligned with the photospheric inver-
sion line.

The second possibility is a support in quadrupolar configurations. Kip-
penhahn and Schlüter (1957, in their Sect. 4) first proposed these inverse
configurations for stable support of dense plasma. The model was further de-
veloped by Malherbe and Priest (1983), Démoulin and Priest (1993), Drake
et al. (1993), and Uchida (1998). The presence of a corridor free of significant
field is needed to have a prominence extension reaching the chromosphere
and converging motions are required to provide mass supply. The quadrupo-
lar model has been extended to magnetic configurations typically found in
active regions (Titov et al. 1993; Bungey et al. 1996) and in polar crown
regions (Cartledge et al. 1996).

The third possibility, and the most plausible in view of the various ob-
servational constraints is the presence of a twisted magnetic configuration. It
can be formed in several ways: by photospheric twisting motions (e.g. Priest
et al. 1989), by converging motions in a sheared arcade with magnetic re-
connection at the inversion line (e.g. van Ballegooijen and Martens 1989), by
resistive instability in a sheared arcade (e.g. Inhester et al. 1992), by relax-
ation and accumulation of magnetic helicity (e.g. Rust and Kumar 1994) or
by emergence from the convective zone (e.g. Low 1996). Low and Hundhausen
(1995) show how a twisted-flux tube topology can bring together many of the
chromospheric and magnetic observations. This was further developed for 3-
D configurations by Aulanier and Démoulin (1998a). In particular they could
reproduce naturally the feet of prominences which have been a long-standing
puzzle (Fig. 8). This model has been successfully tested on an observed fila-
ment by computing the magnetic configuration associated to the photospheric
magnetograms (Aulanier et al. 1998b).



128 Pascal Démoulin and Karl-Ludwig Klein

Fig. 9. Rise of a twisted flux tube in the convective zone with an initial magnetic
field inclined to the flux tube axis by 70. The initial circular flux tube is deformed
by the wake. Continuous lines represent isocontours of the field component along
the flux tube axis. White and black tracers show the motions of individual plasma
elements. (From Emonet and Moreno-Insertis 1998)

6 Global Evolution of Twisted Magnetic-Flux Tubes

6.1 Evolution in the Convective Zone

The amplification of magnetic field by plasma motions (dynamo mechanism)
is taking place mainly at the bottom of the convective zone in the convective
overshoot region (with a height estimated to ≈ 10 Mm). There the suba-
diabatically stratified plasma provides both plasma motions (in particular
differential rotation) and mechanical stability for an intensification of the
magnetic field (e.g. Spiegel and Weiss 1980). A Rayleigh-Taylor instability
permits to form flux tubes. Above a strength ≈ 10 T the flux tube becomes
undulatory unstable: the plasma in upward displaced parts moves to the
downward displaced parts, leading to a buoyancy force acting upward on the
upper parts of the flux tube (e.g. Spruit and van Ballegooijen 1982). Emonet
and Moreno-Insertis (1998 and references therein) have shown that a mini-
mum critical twist is needed so that the buoyant flux tube is not destroyed
in its rise by the hydrodynamic vortex which develops behind. Moreover, for
twist higher than the critical one, the combination of a higher buoyancy force
in the central part of the flux tube with the effect of the following roles (in the
wake) deform the initial twisted flux tube: it forms a magnetic configuration
which has dips not only below the central O point but also on both sides
(Fig. 9). These results have been confirmed by Fan et al. (1998).



Structuring of the Solar Plasma 129

6.2 Emergence at the Photosphere

So far the MHD simulations studied the deep convection zone and not the
emergence through the photosphere of the flux tube. There the hypothesis
breaks down: in particular the flux-tube radius becomes larger than the grav-
itational scale height. One possibility is that the flux tube splits in several
smaller flux tubes. It is also not yet fully clear how the mass unloading of the
flux tube is realized through this emergence but it is thought to be a difficult
and long process (see e.g. Low 1996). The emergence of twisted configurations
is supported by recent vector field measurements (Lites et al. 1995; Leka et
al. 1996).

6.3 Evolution in the Corona

In the soft X-ray range the Yohkoh satellite provides many examples of S-
shaped coronal loops which can be interpreted as the eruption of a twisted
structure (see, e.g., Manoharan et al. 1996; Pevtsov et al. 1996; Rust and
Kumar 1996). This eruption can be triggered by a loss of equilibrium or a
rapid injection of new flux. In the last case, the eruption is driven directly
from the emergence without need of pre-stored energy in the corona (Chen
1996), while in the first case, a slow photospheric evolution permits accumu-
lation of energy in the corona long before the loss of equilibrium occurs. A
catastrophe may happen in the configuration when a cusp in the equilibrium
curve (e.g., twist versus height) is present (e.g. Lin et al. 1998). Finally the
eruption of a 3-D twisted magnetic configuration on the sun may have close
analogy with flux rope formation occurring in the Earth’s magnetotail (e.g.
Birn and Hesse 1990)

Many observations suggest a helical-like pattern during eruption of promi-
nences: on the disk (e.g. Raadu et al. 1988) and more often at the limb (e.g.
Rompolt 1990; Vršnak et al. 1991). During the quiescent phase, prominences
and filaments show little direct evidence of the general magnetic configuration
supporting them (see Sec. 5.1). However a model based on the photospheric
magnetogram can permit to recover the shape of the prominence with a
twisted flux tube (Aulanier et al. 1998b). Moreover the magnetic topology
found is basically the one found independently in MHD simulations of Emonet
and Moreno-Insertis (1998, see in Sec. 6.1) !

6.4 Ejection in the Interplanetary Space

Observation of CMEs can be frequently associated to the eruption of a promi-
nence. This relationship is confirmed both by the detailed examination of
well-observed events and by statistical analysis (e.g. Hundhausen 1988). In
coronograph pictures the prominence embedded within the coronal CME ma-
terial often displays a distinctly twisted structure which strongly suggests a
flux rope structure of the expanding magnetic field. Other but morphological
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evidence for this comes e.g. from radio observations. In a limb event Klein
and Mouradian (1991) observed that the structure initially seen as a rising
prominence shows later up as a radio source where confined electrons rise,
pursuing the trajectory of the rising prominence in a uniformly accelerated
ascending motion that extends over several solar radii. The prolonged con-
finement of the electrons suggests the presence of flux rope type twisted field
lines in the rising structure. In some particularly favorable observations the
ejection can be followed to large distances: with different instruments, Jack-
son et al. (1988) have followed a prominence eruption and the associated
CME from the solar surface up to 100 R�!

The twisted magnetic flux tube is also in agreement with the topology in-
ferred for CMEs from coronagraph observation(e.g. Hundhausen 1988; Chen
et al. 1997; Simnett et al. 1997). In the interplanetary medium, twisted con-
figurations are also identified in magnetic clouds (or interplanetary CMEs)
with in situ measurements from Ulysses (e.g. Bothmer et al. 1996; Weiss et
al. 1996; Farrugia 1997; Osherovich and Burlaga 1997). The link between
magnetic clouds, CMEs and prominence eruptions is highly probable both
on a statistical ground (e.g. Bothmer and Schwenn 1994; Marubashi 1997)
and from the detailed study of individual cases (e.g. Burlaga et al. 1998).

In conclusion, observational evidence and theoretical investigations from
the convective zone to the interplanetary space are in favor of the formation
and subsequent ejection of twisted flux tubes (After all they are natural con-
figurations for a stressed magnetic field !). The twisted flux tubes, probably
formed at the bottom of the convective zone, bring both magnetic energy
and helicity in the corona. In a highly conductive medium like the corona,
magnetic energy can be dissipated at a fast rate (which is only weakly de-
pendent on the magnetic Reynolds number), while magnetic helicity is a well
preserved quantity (see Biskamp 1993). In this way energy release, which is
confined in the corona, permits to get rid of part of the magnetic energy
excess but cannot remove the magnetic helicity (and the associated excess of
magnetic energy). Most of this helicity cannot be removed by cancellation of
opposite helicities because the sign of helicity is mainly hemisphere depen-
dent (negative/positive in the north/south hemisphere) without the reversal
of sign observed for the magnetic field itself after each solar cycle (11 years).
The only way the sun has to get rid of the accumulated magnetic helicity is
then by ejecting it in the interplanetary medium (Low 1996). Such evolution
(from the formation to the ejection) of twisted flux tubes is a natural, though
complex, consequence of the MHD equations.
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73. Kippenhahn, R., Schlüter, A. (1957) Zs. Ap. 43, 36
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Abstract. The existence of a magnetospheric cavity around a planet depends on
the interactions of the planet including its atmospheric and magnetic environment
with the interplanetary medium. A magnetized planet like the Earth sets a mag-
netic obstacle against the supersonic super-Alfvénic solar wind flow. The solar wind
pressure shapes the magnetosphere, compressing it on the dayside to a few Earth’s
radii while the nightside tail extends to hundreds of Earth’s radii. Away from a
homogeneous and constant distribution, very different plasma regions have been
identified inside the magnetosphere. Mass and energy transfers with the solar wind
are considered as responsible for the magnetospheric plasma structure and dy-
namics at large-scale as well as for impulsive or transient events. However, these
transfer processes remain poorly understood, and reconnection and other working
assumptions are presently put forward and developed. Detailed descriptions of the
magnetosphere at various complexity levels can be found in textboo ks on space
plasma physics. This simplified introduction only aims at proposing keys to get
an insight into the structure of the magnetospheric plasma, into a few basic con-
cepts and specific processes at the root of the present understanding and also into
questions and issues to be addressed in the future.

1 Introduction

The magnetosphere designates the cavity carved out in the solar wind flow
around a planet by the plasmas and fields of planetary origin. By comparison
to the field complexity and/or plasma source multiplicity in other plane-
tary magnetospheres, the terrestrial magnetosphere appears extremely sim-
ple from this point of view. The only internal plasma source is the Earth’s
ionosphere. The planetary magnetic field can be described by a dipole with
its axis slightly tilted relative to the rotation axis. In the magnetosphere, the
dipolar model mainly holds with a very good approximation for the inner
regions within typically 10 Earth’s radii. Beyond, the solar wind effects con-
tribute to compress it on the dayside and to stretch it along the nightside
tail.

The term of cavity, often used for the magnetosphere, refers to the low
concentration of the magnetospheric plasma, diluted by one order of mag-
nitude or more relative to the solar wind. Spacecraft observations have in
fact identified very different regions, as illustrated in the simplified sketch of
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Fig. 1. Cross-section of the magnetosphere in the noon-midnight meridian plane
(adapted from personal communication by P. Robert, CETP)

Fig. 1. Just inside the magnetopause, which is the boundary of the magneto-
sphere with the solar wind, lies a thin boundary layer. It consists of several
parts at high or low latitudes but it exhibits everywhere a steep density gradi-
ent with the radial distance to the magnetopause: starting from values of the
order of 5.106m−3 in the solar wind outside the magnetopause, the density
decreases by a factor of about 10 across the boundary layer. Its temperature
of the order of 10−100 eV is comparable to the solar wind values in the mag-
netosheath, downstream from the bow shock. At larger distances from the
magnetopause, the tail lobes are generally considered as empty regions; the
plasma becomes extremely rarefied, less than 104m−3. Starting from several
Earth’s radii and extended across the whole magnetotail around the equato-
rial plane, the plasmasheet concentrates most of the magnetospheric plasma.
Relative to the boundary layer, the plasma reaches both weaker densities
(∼ 5.105m−3) and much higher temperatures, exceeding the keV, that is to
say larger by a factor 100 about. The temperature still increases near the plas-
masheet edge and it can reach hundreds of keV or more in the ring current
around 6 Earth’s radii, which is induced by energetic particle drifts encir-
cling the Earth. Such energetic particles are also detected closer to the Earth
in the radiation belts, where they are locally trapped and bounce back and
forth between both hemispheres along dipolar field lines. They are embedded
in the plasmasphere, the innermost plasma region within a few Earth’s radii
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about: the dense (∼ 108m−3) and cold (∼ 1 eV ) plasma that it contains
clearly points to the ionosphere as its direct source.

Without detailing any further, general questions arise out of this simplified
description, such as the origin of the different plasma regions observed in the
magnetosphere, the nature of the processes governing the density and energy
distributions or the relationships between the magnetospheric plasma and the
solar wind. Recent and excellent textbooks extensively address a number of
questions in space plasma physics, for example Basic Space Plasma Physics
by Baumjohann and Treumann (1997), Introduction to Space Physics edited
by Kivelson and Russell (1995) or Convection and Substorms: Paradigms of
Magnetospheric Phenomenology by Kennel (1995). The present chapter only
intends to present a brief and simplified introduction to the magnetospheric
plasma, to point out some of the main processes involved in the magneto-
spheric structure and dynamics, and to give a flavor of recent evolutions in
this research field.

The terrestrial magnetosphere results from the interaction of the inter-
planetary medium with the planet Earth, its atmospheric and magnetic en-
vironment. A first approach consists of examining the energetics of the in-
teracting bodies and of sorting out the dominant energy sources (Sect. 2). It
demonstrates the role of the magnetic field of planetary origin and of the solar
wind which hits on the planetary magnetic obstacle during its expansion in
the interplanetary medium at super-sonic super-Alfvénic speeds. Simplified
magnetohydrodynamic equilibrium conditions at the magnetopause provide
realistic estimates of the magnetosphere’s shape and of the solar wind flow
around it (Sect. 3). Section 4 briefly analyses the case of the reconnection be-
tween the planetary and interplanetary magnetic fields and summarizes some
of its fundamental consequences such as the solar wind penetration into the
magnetosphere and the generation of a large-scale plasma transport between
the different magnetospheric regions. Recent observations have revealed the
presence of impulsive and bursty processes at the magnetopause and in the
magnetotail, which could be interpreted as reconnection signatures (Sect. 5).
These fundamental questions of reconnection, of plasma and energy transfers
between the solar wind and the magnetosphere remain poorly understood;
they represent the targets of future missions devoted to the study of plasma
interfaces like CLUSTER.

2 Energetics of the Interacting Media

The Earth with its magnetic and atmospheric environment is immersed into
the interplanetary medium. In order to understand the nature of their inter-
actions, we first start by examining the dominant energy sources stored in
both media.
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2.1 The Interplanetary Medium at the Earth’s Orbit

Among the various components, solar plasma, interstellar neutral gas, cosmic
rays and others detected in the interplanetary medium, the main responsible
for the interaction with the terrestrial environment is the solar wind. Briefly,
the solar wind plasma, with H+ ions as dominant ion species, is produced
and accelerated in the solar corona; beyond several solar radii, it expands
at large speeds throughout the solar system. According to the Magnetohy-
drodynamics theory (MHD), this radial expansion, combined with the solar
rotation, results in a spiral configuration of the magnetic field lines. At the
Earth’s orbit, the observed solar wind parameters typically scale as:

Plasma (dominant species H+): n ∼ 5.106m−3

T ∼ 10 eV
V ∼ 400 km/s

Magnetic field amplitude: B ∼ 4nT

where n, T, V, B stand for density, temperature, velocity, magnetic field.
These typical values provide an estimate of the orders of magnitude of the
energy densities stored in the solar wind from the available sources:

Ion thermal motion: PT ∼ 8.10−12 J.m−3

Ion bulk flow: PD ∼ 7.10−10 J.m−3

Magnetic field amplitude: PM ∼ 6.10−12 J.m−3

where PT , PD, PM stand for the Thermal, Dynamic and the Magnetic pres-
sures.

The solar wind observed at the Earth’s orbit is not stationary but exhibits
possibly large variations in density, velocity, pressure. The interplanetary
magnetic field can point in any direction and even reverse on short time
scales. Intense events like Coronal Mass Ejections (CME), high-speed jets for
example, propagate through the solar system and cause strong departures
from average values. Therefore, the solar wind energy densities also fluctuate,
and the estimates given above only provide orders of magnitude useful to
point out the dominant processes. In the solar wind plasma, the dynamic
pressure of the bulk flow exceeds the magnetic and thermal pressures by two
orders of magnitude. Indeed, these scales express in terms of pressures the
more usual relationships known about velocities, stating that the solar wind
velocity typically exceeds the sound speed and the Alfvén speed by a factor
10.

2.2 The Earth’s Environment:
The Upper Atmosphere and the Ionosphere

As most planets in the solar system, the Earth is surrounded by an atmo-
sphere. Ionized particles are created in the upper layers of the atmosphere
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by solar radiation. Typically, the solar radiation at UV and X wavelengths
below 300 nm does not reach the ground. Its absorption depends on the wave-
length, on the atmospheric constituents and on the altitude. The spectrum
is relatively complex, but only wavelengths below 150 nm can be responsible
for the ionization of neutral atoms and molecules. The ionization processes
occur above about 80-km altitude and the produced ionized species form the
Earth’s ionosphere, embedded in the upper atmospheric layers. At the lower
altitudes from 80 km to 160 km, heavy species are created, mainly NO+

and O+
2 . In the upper ionosphere, O+ dominates over hundreds of kilome-

ters up to 1000 - 2000 km, and beyond remain only lighter ions like H+. Of
course, the ion concentration fluctuates as a function of the solar fluxes, the
solar zenithal angle, or other ionospheric phenomena, but the typical height
profiles generally present a peak of the order of 1011 to 1012m−3 at about
300 km altitude. By comparison, the neutral concentration exponentially de-
creases with the altitude from the ground level, but with values of the order
of nn ∼ 1015m−3 at the same altitude, it still exceeds the ionized gas con-
centration by several orders of magnitude: the ionosphere can be regarded as
a weakly ionized gas, embedded in dense atmospheric layers.

Despite the high density of neutral constituents in the upper ionosphere,
the collision frequency becomes negligible relative to the gyrofrequency typ-
ically above 180 km (called F region), and the charged particle motion is
then dominantly controlled by the electromagnetic effects rather than by col-
lisions with neutrals. In presence of electric field, all species, electrons and
ions, are drifting across magnetic field lines at the same bulk velocity equal
to the electromagnetic velocity (E × B/B2). This motion, dominant feature
in the upper ionosphere, does not produce any current perpendicularly to the
magnetic field. Currents are thus constrained to flow in the direction aligned
along magnetic field lines.

In the lower ionosphere (region E) typically between 80 km and 180 km,
the collisions between ions and neutrals, in particular, become comparable
to and compete with the electromagnetic effects. The perpendicular conduc-
tivities take significant values and the currents can flow in any direction. In
conclusion, field-aligned currents can flow everywhere in the lower as in the
upper ionosphere. Their closure by currents perpendicular to the magnetic
field can only occur within this lower ionospheric layer, about 100-km thick,
that is to say over a very limited altitude range by comparison to the planet’s
size. Finally, and from an electrical point of view, the ionosphere, ionized gas
embedded in the upper atmosphere, can be regarded as a thin spherical con-
ductor encircling the Earth which contributes to close large-scale circuits of
currents flowing along magnetic field lines from or toward outer regions of
the Earth’s environment.

In the ionosphere, different energy sources co-exist due to the presence
of the terrestrial magnetic field, the atmospheric neutral gas, the ionospheric
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plasma and its bulk drift across magnetic field lines. The characteristic values
in the ionosphere at 300 km, altitude of the concentration peak, are:

Neutral atmosphere: nn ∼ 1015m−3

Tn ∼ 1000K

Ionosphere (F-region, dominant species: O+): ni ∼ 1011m−3

Ti ∼ 2000K
Vi ∼ 1 km/s

Magnetic field amplitude: B ∼ 4.104 nT

where the subscripts n and i refer to the neutral and ionized components.
The energy densities stored in the upper atmosphere and in the ionosphere
are estimated for the different sources as follows:

Neutral thermal motion: PA ∼ 1.10−5 J.m−3

Ion thermal motion: PT ∼ 3.10−9 J.m−3

Ion bulk flow: PD ∼ 1.10−9 J.m−3

Magnetic field amplitude: PM ∼ 6.10−4 J.m−3

where PA represents the Atmospheric thermal pressure. The thermal pressure
of the dense atmospheric layers dominate all other terms from the ground
level. Then the exponential decrease of the neutral concentration towards
higher altitudes causes the decrease of the neutral thermal pressure. At 300-
km altitude (F region), it is weaker than the magnetic pressure by almost
two orders of magnitude: the plasma behavior has split off from the neutral
dynamics to become governed by the magnetic field. It is equ ivalently ex-
pressed in other words that, in the ionospheric F-region, the charged particle
gyrofrequency exceeds the collision frequencies between species, and in par-
ticular with neutrals. The energy density stored in the cold, slow and weakly
ionized ionospheric plasma appears quite negligible relative to the energy
densities from the atmospheric and magnetic sources.

2.3 The Earth’s Environment:
The Terrestrial Magnetic Field and the Magnetosphere

Above the ionosphere, in the magnetosphere, all energy densities are expected
to decrease with the distance from the Earth. The neutral concentration, ex-
ponentially decreasing from the ground level, becomes extremely weak; the
plasma, mainly H+, is very diluted; and the magnetic field also decreases
according to the dipolar power law as r−3. The different plasma regions ex-
isting in the magnetosphere are described in Sect. 1. Their characteristics
vary, but to give orders of magnitude, we focus here on the plasmasheet, the
extended region around the equatorial plane which plays a dominant role in
the magnetosphere. Relative to the ionosphere or the solar wind, the plas-
masheet contains much more diluted and energetic plasma with the following
typical values at ten Earth’s radii:
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Plasma (dominant ion species H+): n ∼ 5.105m−3

T ∼ 1 keV
V ∼ 25 km/s

Magnetic field amplitude: B ∼ 40nT

The energy densities are estimated from the different energy sources as:

Ion thermal motion: PT ∼ 2.10−11 J.m−3

Ion bulk flow: PD ∼ 5.10−13 J.m−3

Magnetic field amplitude: PM ∼ 6.10−10 J.m−3

As expected, all magnetospheric pressures are smaller than in the iono-
sphere, but the magnetic field still remains the dominant energy source. In
particular, it largely exceeds the pressure of the plasma itself, more energetic
but also much more diluted than in the ionosphere. Diluted and governed by
the magnetic field, the magnetospheric plasma exhibits the main feature of
being collisionless. Finally, these estimates lead to the conclusion that, above
the dense atmospheric layers dominated at low altitude by the neutral ther-
mal pressure, the magnetic field controls the plasma dynamics in the upper
ionosphere and beyond, in the whole terrestrial environment. It is playing a
central role in the interaction of the Earth with the interplanetary medium.

For comparison, the energy density estimates in the terrestrial environ-
ment and in the solar wind are collected in Table 1.

Table 1. Typical orders of magnitude of energy densities stored in the ionosphere
(at a reference altitude of 300 km), in the magnetosphere (at about 10 Earth’s
radii) and the solar wind (at Earth’s orbit).

Energy densities (expressed in J.m−3) in:

Energy sources: Ionosphere Magnetosphere Solar Wind

Neutral thermal motion ∼ 1.10−5

Ion thermal motion ∼ 3.10−9 ∼ 2.10−11 ∼ 8.10−12

Ion bulk flow ∼ 1.10−9 ∼ 5.10−13 ∼ 7.10−10

Magnetic field ∼ 6.10−4 ∼ 6.10−10 ∼ 6.10−12

The orders of magnitude in Table 1 suggest a first picture of the solar ter-
restrial interactions. In the interplanetary medium, the solar wind is mainly
responsible for interacting with the Earth’s environment. Its main energy
source is stored in its bulk flow drifting at supersonic and super-Alfvénic
speeds. As most planets, the Earth can oppose its gaseous envelop. Starting
from the ground level, the atmospheric thermal pressure dominates in the
dense layers of the neutral atmosphere. It rapid ly decreases with altitude,
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and at the altitude of the ionization peak in the ionosphere (about 300 km),
the magnetic pressure has not only exceeded the pressure of the ionized gas
but also the pressure of the neutral gas, which is the domimant constituent
at those heights. At larger distances, all pressures decrease in the very tenu-
ous magnetospheric plasma. The dominant energy source is again stored in
the magnetic field, even if the magnetic pressure is divided by several or-
ders of magnitude relative to its value in the ionosphere. In other words, the
Earth sets a magnetic obstacle against the dynamic pressure exerted by the
supersonic super-Alfvénic solar wind. In Table 1, the comparable orders of
magnitude between the magnetospheric magnetic pressure and the solar wind
dynamic pressure intuitively suggests that a balance can be achieved.

3 Fluid Approach of the Solar Wind/Magnetosphere
Interaction: The Concept of Closed Magnetosphere

From the dominant energy sources estimated in Sect. 2, the interaction be-
tween the interplanetary medium and the planet Earth can simply be ap-
proached by the model of a monokinetic jet of solar plasma flowing at su-
personic, super-Alfvénic speeds against a magnetic dipole. The opposite case
of the supersonic aircraft flying through the atmospheric gas at rest is well
known to produce a bow shock upstream from the obstacle. Considered in the
reference frame of the obstacle, the interaction of the supersonic solar wind
with the planetary dipole similarly produces a bow shock upstream from
the magnetosphere. The bow shock contributes to decelerate at subsonic and
sub-Alfvénic speeds the solar wind, which can then turn around the obstacle.
In terms of energy budget, part of the energy initially stored in the solar
wind bulk flow upstream from the bow shock is converted downstream into
thermal and magnetic energy. Afterwards, the solar wind progressively accel-
erates again along the obstacle flanks, recovering supersonic super-Alfvénic
speeds.

The interaction between the solar wind and the Earth is also responsible
for the existence of the magnetopause, boundary that separates the inter-
planetary medium and the solar wind flow from the terrestrial environment
controlled by the planetary magnetic field. The solar wind flowing outside the
magnetopause along its flanks does not penetrate into it; conversely, the plan-
etary magnetic field remains confined inside the magnetosphere and does not
diffuse into the interplanetary medium. In a first approximation, the magne-
topause is an equilibrium boundary which achieves the balance between the
dynamic pressure of the solar wind and the magnetic pressure prevailing in
the magnetospheric vacuum.

A brief description of individual particle motions near the magnetopause
enlightens the microphysic processes invoved in the solar wind - magneto-
sphere interaction. Ideally, the solar wind particles experience a specular re-
flection at the magnetopause, as illustrated in Fig. 2. Let us assume that the
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oncoming solar wind particles can cross the magnetopause, thus they come
under the influence of magnetospheric magnetic field. They immediately de-
scribe a cyclotron rotation around magnetic field lines, which brings them
back at the magnetopause before having completed a full turn. They escape
again into the interplanetary medium at velocities symmetric of incident ve-
locities relative to the normal at the magnetopause, as for a mirror reflection.
Finally, the solar particles cannot penetrate the magnetosphere over distances
much larger than twice their Larmor radius before turning back, and the net
mass flow across the boundary is zero. Indeed, the particle Larmor radii give
a scale for the magnetopause thickness: physically, it represents the distance
necessary for the interface layer to achieve an equilibrium with jump condi-
tions in plasmas and fields on both sides. Inside the magnetopause layer, the
electrons and ions decribe their cyclotron motion in an opposite direction,
which generates a current. Regarded as a current layer, the magnetopause is
playing the role of a Faraday cage for the magnetosphere. This explains in
particular its shielding role between the magnetospheric and interplanetary
media. Finally, the magnetopause currents produce a magnetic field which
adds to the initial magnetic field of planetary origin.

Fig. 2. Sketch illustrating the specular reflection of solar wind particles at the
magnetopause

The equilibrium conditions at the magnetopause can be computed from
MHD and from the general conservation laws in fluids. In presence of disconti-
nuities, these conservation laws lead to jump conditions between both sides of
the discontinuity. In first approximation, the magnetopause can be regarded
as a tangential discontinuity in equilibrium between the solar wind dynamic
pressure and the magnetospheric magnetic pressure. No mass flux can flow
across it, and with the neglect of the interplanetary magnetic field, the normal
component of the magnetic field vanishes across the boundary. The pressure
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balance on both sides can be simply calculated from the Rankine-Hugoniot
jump equations (see Heyvaerts, this issue):

n 2 ρm V 2
SW cos2 χ = n

B2

2μ0
(1)

where ρm is the solar wind mass density. The angle χ of the oncoming par-
ticle velocity VSW with the normal n to the magnetopause depends on the
magnetopause geometry. The left-hand member represents the total impul-
sion flux on the solar wind side due to the bulk motions of both oncoming
and reflected particles. On the magnetospheric side (right-hand member), the
only contribution to the impulsion flux comes from the terrestrial magnetic
field B. Finally, the equilibrium conditions at the magnetopause relate the
amplitude of the tangential magnetic field (since the normal component is
equal to zero, Bn = 0) to the solar wind parameters:

B2
mp ≡ B2

t = 4 μ0 ρm V 2
SW cos2 χ (2)

Equation 2 does not depend on the location of the magnetopause relative
to the terrestrial dipole but includes an implicit relation to the magnetopause
shape through the angle χ.

Finally, the search for the magnetospheric magnetic field distribution in
the magnetosphere leads to solve a differential equation with conditions at
free boundaries. With the approximation of negligible current distribution
inside the magnetospheric cavity, the problem reduces to search for a scalar
potential γ such that:

B = −∇γ (3)

with the boundary conditions:

• at the Earth’s surface. This is a fixed boundary, and the terrestrial mag-
netic field distribution on the ground is well known,

• at the magnetopause. This is the free boundary of the problem, because of
its unknown location and shape. The normal component of the magnetic
field cancels out (Bn = 0) and the tangential component obeys (2) at
the magnetopause.

A simplified approach. This problem is often called after Chapman and
Ferraro who were the first to propose a solution consistent with the present
state of the art (Chapman and Ferraro, 1931). Indeed, they addressed a
simplified question, illustrated in Fig. 3: briefly, they assumed that the ter-
restrial dipole axis was perpendicular to the Sun-Earth axis and that the
magnetopause could be assimilated to an infinite plane also perpendicular to
the Sun-Earth axis. It thus defines two half spaces with the solar wind on one
side and the magnetosphere on the other one. Of course, the magnetic field



Structure of the Magnetospheric Plasma 147

distribution in the magnetospheric half-space results from the interaction of
the solar wind with the terrestrial dipole, but it can be indirectly computed.
The magnetic image method predicts that this magnetospheric distribution
would be identical to the distribution produced by the interaction of two sym-
metric dipoles: the real terrestrial dipole (M) plus a virtual dipole (M’) of
equal magnetic moment and located at the symmetric distance relative to the
planar magnetopause along the Sun-Earth axis. Such a configuration satis-
fies the boundary condition that the normal component of the magnetic field
cancels out at the magnetopause (Bn = 0). Although extremely simplified,
this picture provides interesting estimates.

Fig. 3. Sketch representing the terrestrial dipole (M) and the image dipole (M’) in
the noon-midnight meridian plane (adapted from the original sketch by Chapman
and Ferraro (1931))

For example, let us consider the sub-solar point S at the magnetopause
where the planar magnetopause intersects the axis Sun-Earth (Fig. 3). It is
located just in the middle between the two dipoles and the total magnetic
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field is simply twice the field produced by the terrestrial dipole at the distance
L(S):

B(S) = 2
B0

L(S)3
(4)

where B0 is the amplitude of the magnetic field at the Earth’s surface at the
equator (B0 � 4000nT ) and L(S), the geocentric distance of the point S,
expressed in Earth’s radii, is also the geocentric of the magnetopause Lmp

along the Sun-Earth axis. These simple considerations quantify the magnetic
field increase predicted and observed at the nose of the magnetopause.

Moreover, the combination with the equilibrium condition (2) at the mag-
netopause provides an estimate of the magnetopause geocentric distance Lmp,
which remained unknown:

Lmp ≡ L(S) =
(

B2
0

μ0 ρm V 2
SW cos2 χ

)1/6

(5)

For a solar wind flow approximately aligned along the line Sun-Earth (χ �
0), and with the orders of magnitude given in Sect. 1, this relation predicts
the magnetopause location at Lmp � 10 Earth’s radii, in good agreement
with the observations.

The present models. Successful in these first predictions of the magne-
topause location, the Chapman-Ferraro model cannot be exploited any fur-
ther because of obvious limitations. In particular, the assumption of a planar
magnetopause perpendicular to the Sun-Earth axis is not verified, except
maybe near the nose of the magnetopause, it cannot describe the magneto-
spheric tail.

More recent models make use of numerical simulations to compute the
magnetopause shape and location, but the basic procedure remains prac-
tically unchanged and the subsequent and necessary improvements do not
actually modify the physical meaning of this simplified approach. Briefly, the
equilibrium condition (2) at the magnetopause is modified to include a pa-
rameter κ which describes various conditions and efficiency variations for the
specular reflection along a curved magnetopause:

B2
mp ≡ B2

t = κμ0 ρm V 2
SW cos2 χ (6)

Then, once the three-dimensional shape of the magnetopause is computed,
the fluid theories predict the solar wind flow distribution towards the obsta-
cle and its deviation around it. Results from one of the first quantitative
three-dimensional studies, then exploited for years, is illustrated in Fig. 4
(Spreiter et al., 1966). The steamlines, represented by the dashed lines, show
the flow deviation experienced by the solar wind downstream from the bow
shock (outer boundary) around the magnetopause ( inner boundary). The
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fluid parameters estimated along these streamlines allow to quantify the flow
deceleration, compression and heating just downstream from the shock at the
nose of the magnetopause and then its progressive acceleration and cooling
along the magnetopause flanks.

Fig. 4. Solar wind flow around the magnetopause (Spreiter et al., 1966)

This approach does not take into account the interplanetary magnetic
field because its pressure is negligible relative to the solar wind dynamic
pressure. Indeed, the magnetic field is simply transported with the solar wind
flow. Its distribution can be computed from the Maxwell’s equations with the
approximation of frozen field (see Heyvaerts, this issue):

∂B

∂t
= ∇ × (VSW × B) (7)

The magnetic field lines (solid lines) are represented in Fig. 4 for two
initial conditions with an upstream magnetic field perpendicular to the flow
(left) or with a 45◦ tilt (right). The magnetic field lines bend after the bow
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shock, drape around the magnetopause and pile up at the nose of the mag-
netopause, thus increasing the magnetic flux in this region. In other words,
the solar wind dynamic pressure upstream from the bow shock is converted
downstream into thermal and magnetic pressur e. The agreement between
the simulated and measured parameters brings the evidence of the physical
reality contained in this simple description of the solar wind - magnetosphere
interaction. Numerical efforts have then substantially developed. Nowadays,
the computer power allows solving self-consistently the equations of the three-
dimensional magnetohydrodynamics (MHD) and Maxwell’s equations from
conditions in the upstream solar wind and at the planetary surface. Both
free boundaries, the bow shock and the magnetopause, appear naturally in
the simulation box. These global MHD modelings can also take into account
more complex plasma, current and field configurations in the magnetosphere
(see for example, Ogino et al., 1986).

In conclusion, the analysis of the dominant energy sources stored in the
interacting bodies, Earth and interplanetary medium, has led to a success-
ful description of the magnetopause: it appears as an equilibrium boundary,
shielding the Earth and its magnetic environment, the magnetosphere, from
the direct impact of the super-sonic and super-Alfvénic solar wind, which is
deviated around it. However, this conclusion admits of some departures and
does not explain some observations. For example, the magnetosp here is not
an empty cavity but contains different plasma regions. Some of them present
similar characteristics to the solar wind plasma. A large-scale electric field is
observed in the dawn-dusk direction across the magnetosphere. And finally,
the auroral activity above the high-latitude regions is found to be correlated
to the solar activity.

4 The Interactions Between Interplanetary
and Planetary Magnetic Fields:
The Concept of Convection

The observed presence of fields, plasmas, and auroral activity in the terres-
trial magnetosphere requires to improve our simplified description of a fast
solar wind flow hitting the planetary dipole. Hereafter, we will focus on the
magnetized feature of the solar wind plasma. With negligible effects in terms
of energetics (see Sect. 2), the interplanetary magnetic field may however play
a particular role in the interaction between the solar wind and the magneto-
sphere. This can be roughly illustrated in the f ollowing way. At the Earth’s
orbit, the direction and the amplitude of the interplanetary magnetic field
fluctuates due to the solar rotation, and the polarity reverses depending on
the Earth’s location relative to the solar neutral sheet. It may happen that, at
some times and at some places at the magnetopause, the interplanetary mag-
netic field becomes equal and opposite to the terrestrial magnetic field. Their
combination would produce a reconnection figure with an X-point where the
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total field cancels out: the solar wind plasma could then freely penetrate into
the magnetosphere.

Again, the interaction between the planetary and interplanetary magnetic
fields can be quantitatively approached with a simplified geometry, ignoring
in a first step the dominant dynamic pressure in the solar wind. Let us con-
sider the simple interaction of the terrestrial dipole with an interplanetary
field, constant, homogeneous and parallel to the dipole axis. Although sim-
plified, this case basically contains the physical meaning of more realistic and
complex field configurations.

Fig. 5. Simplified representation of a northward Interplanetary Magnetic Field BI

and the terrestrial dipole

Let us define the z-axis as the dipole axis, as illustrated in Fig. 5. In
the spherical coordinate system with the origin at the Earth’s center, r is
the radial distance, θ the colatitude counted from the z-axis (north), and ϕ
the azimuthal angle in the equatorial plane perpendicular to the z-axis. The
components of the dipolar magnetic field B express as:

Br = −2 cos θ B0

(
RE

r

)3

Bθ = − sin θ B0

(
RE

r

)3

Bϕ = 0
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where RE represents the Earth’radius and B0 the magnetic field amplitude
at the Earth ’s surface at the equator. The interplanetary magnetic field BI

is simply considered as constant along the z-axis: BI = BI ez

The magnetic field lines resulting from the superposition of both magnetic
fields are axisymmetric since both fields do not depend on the ϕ component.
Their equation in any meridian plane (at a constant ϕ) can be written as:

+
BI

2

(
r

RE

)2

sin2 θ − B0

(
RE

r

)
sin2 θ = constant (8)

At short distances from the Earth, the dipolar contribution dominates
(second term on the left-hand side), the magnetic field lines are approximately
dipolar, and conversely at large distances, the interplanetary field dominates
(first term).

Case of a northward IMF. In the case of a purely northward interplane-
tary magnetic field, the constant BI is positive. Since B0 is also positive, the
left-hand member can vanish, and the choice of a null constant at the right
hand member defines a particular field line, independent of θ:

∀ϕ, r = RE

(
2B0

BI

)1/3

(9)

The set of field lines, obeying (9) for any angle ϕ, defines a sphere around
the Earth, which separates closed field lines of dipolar origin inside from
open field lines in the interplanetary medium outside. No connection exists
between both media, separated by this spherical magnetopause. This is the
so-called model of the ”dipole-in-sphere”, illustrated in the left part of Fig. 6,
which has led to the concept of ”closed magnetosphere”. The solar dynamic
pressure additionally contributes to distort the initial sphere into an egg-
shaped magnetosphere, compressed in the Sun direction and extended in
the opposite direction, but it will not change the essential point that the
magnetosphere is closed. This situation is equivalent to the model described
in Sect. 3 with a magnetosphere fully insulated against any exchange with the
interplanetary medium. This is the only situation where a closed configuration
can be predicted. All other orientations of the interplanetary magnetic field
would behave more or less similarly to the case of a southward interplanetary
magnetic field, although the geometry could be much more complex.

Case of a southward IMF. A southward interplanetary magnetic field
expresses as: BI = −BI ez, and the left-hand side in the magnetic field line
equation (8) becomes always negative. With this sign change, the circular
field lines no longer exist. The new topology is illustruted in the right part of
Fig. 6. In addition of the open field lines (A) in the interplanetary medium
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Fig. 6. Superpersition of a dipolar magnetic field with a constant northward (left)
or southward (right) field, adapted from Stern (1977)

and of the closed dipolar field lines (C) in the inner regions, appears above
the polar caps a new class of fiel d lines (B) with one footprint connected to
the planet and the other end immersed in the interplanetary medium. The
total magnetic field vanishes at all points such that:

∀ϕ, θ =
π

2
, and r = RE

(
B0

BI

)1/3

(10)

They form, in the equatorial plane of the magnetosphere (θ = π/2), a
circle of points where the planetary and interplanetary magnetic fields are
exactly equal and opposite, resulting in a total field equal to zero. Two of
these points N1 and N2 are represented in the meridian cross-section of Fig. 6
perpendicular to the equatorial plane. At all points of this so-called ”neutral
line”, an initially open interplanetary magnetic field line reconnects with an
initially closed planetary field line, as illustrated for N1 and N2. Again, the
dynamic pressure exerted by the solar wind is expected to distort the circular
neutral line into an oval shape, coming much closer to the Earth on the day-
side (about 10 RE) than downtail (possibly one or several hundreds of Earth’s
radii). This asymmetric configuration is displayed in Fig. 7 which represents
a cross-section of the magnetosphere in the noon-midnight meridian plane.
Fig. 7 also illustrates the consequences of the reconnection processes on the
particle and field dynamics.

The merging of a southward interplanetary magnetic field line with a
closed terrestrial field line (both labeled 1) forms two new field lines (labeled
2) with one footprint connected to the polar cap of one hemisphere and the
other end immersed in the interplanetary medium. Their initially stiff cur-
vature is getting smoother as they are transported downtail over the polar
caps with the solar wind (labels 3 to 6). When they reach the opposite neu-
tral point at the nightside magnetopause, they reconnect (in 7) and produce
two field lines (both labeled 8): an open magnetic field line, then dragged
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Fig. 7. Sketch of the reconnection model initially proposed by Dungey (1961). (The
figure has been adapted from Baumjohann and Treumann (1997))

downstream by the solar wind flow, and a closed field line with both ends
connected to the Earth and stretched on the nightside. This stretched field
line is then transported Earthward towards the dayside magnetopause, where
it contributes to balance the magnetic flux previously depleted by the initial
dayside merging process. The same cycle can resume.

With the magnetic field frozen into the plasma, the solar wind plasma is
also involved in the reconnection processes between planetary and interplan-
etary fields. Solar wind particles initially gyrating around an interplanetary
field line can penetrate the magnetosphere once the field line has merged
with a closed magnetospheric field line (and vice versa for magnetospheric
particles). The reconnection processes are responsible for plasma exchanges
between solar wind and magnetosphere: this is the concept of open magne-
tosphere, first proposed by Dungey (1961).

Reconnection has also important implications regarding the plasma trans-
port in the magnetosphere. The plasma contained in newly reconnected mag-
netic flux tubes at the dayside magnetopause is transported downtail over
both polar caps. When the tubes reach the distant nightside reconnection
point, part of the plasma escapes into the solar wind with newly formed in-
terplanetary flux tubes. The other part, trapped on closed field lines, is trans-
ported sunward toward the planet and the dayside magnetopause (fig. 7).
Taking into account the 3-D structure of the magnetosphere, this plasma
circulation in the magnetosphere describes two vortices, from the dayside
magnetopause above each polar cap toward the nightside tail and then back
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to the dayside on closed field lines: it is called ”convection”, because these
vortices look like the flow cells generated in a fluid by a heat source (although
no heating process is involved here). In the reference frame of the Earth, this
magnetospheric plasma flow is equivalent to an electric field, the so-called con-
vection electric field, directed from dawn to dusk across the magnetosphere.
Measured by spacecraft, or from ground-based instruments at the field line
footprints, the convection electric field is typically of the order of 0.2 mV/m
in the magnetosphere, corresponding to a total dawn-to-dusk potential drop
across the magnetosphere of 50 kV. By comparison, the antisunward flow of
the solar wind at 400 km/s in the interplanetary magnetic field (4 nT at the
Earth’s orbit) is equivalent to an electric field of 1.6 mV/m in the terrestrial
reference frame, resulting in a potential drop of the order of 400 kV over a
distance equivalent to the tail diameter (∼ 40RE). These figures indicates
that roughly 10 % of the magnetic flux carried by the solar wind is transferred
inside the magnetosphere.

In conclusion, the reconnection processes between the terrestrial and in-
terplanetary magnetic fields are responsible for particle exchanges between
the magnetosphere and the solar wind, and in particular for plasma entries
from the solar wind into the magnetospheric cavity. In addition, and this
is another important consequence, they also drive a large-scale plasma flow
inside the magnetosphere: the convection motion describes two vortices with
a tailward flow from the dayside magnetopause over the poles and a sunward
return in the inner magnetosphere. In this model of the reconnecting mag-
netosphere, the interaction between the solar wind and the magnetosphere
is assimilated to a dynamo which generates the convection electric field and
drives the plasma inside the magnetospheric cavity (Cowley, 1982). From a
competing or complementary point of view, Axford and Hines (1961) sug-
gested the fluid viscosity at the magnetopause at the origin of the convection
motion. Briefly, this model was initiated from observations near the magne-
topause of the plasma bulk velocities, which, from solar wind values at the
magnetopause, progressively decrease across the boundary layers. However,
the estimates of the resulting magnetospheric transport show that, if the fluid
viscosity at the magnetopause may contribute to the convection, it cannot
account by itself for the observed fields.

Large-scale electrodynamics in the magnetosphere and auroras in
the ionosphere. The penetration of solar wind plasma and its transport
in the whole magnetospheric cavity contribute to create plasma regions well
identified in the magnetosphere. Just inside the magnetopause, the bound-
ary layers are essentially populated by particles of solar origin that have
entered the magnetosphere. They exhibit characteristics similar to the solar
wind in the magnetosheath downstream the bow shock, with densities of the
order of several 106m−3, and temperatures of several tens to hundreds of
electron-Volts. The layers on the dayside and on the magnetosphere’s flanks
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are generally called the Low-Latitude Boundary Layer (LLBL), while on the
nightside lies the High-Latitude Boundary Layer (HLBL), commonly called
the mantle.

The convection transport drives these boundary layer particles to large
distances in the nightside tail, typically to hundreds of Earth’s radii. Part of
them is lost and returns to the solar wind, while others accumulate around the
equatorial plane of the magnetotail and form the plasmasheet, particle reser-
voir permeated by closed magnetic field lines with both ends connected to the
planet and a very stretched configuration in the tail. As already mentioned
these stretched flux tubes filled with plasmasheet plasma are transported
sunward by convection. During their motion, their volume severely decreases,
their inner pressure increases, and the plasma is heated: for example, at ten
Earth’s radii, the plasmasheet temperature has increased to a few keV, for a
density of about 105m−3, weaker than in the boundary layers. Closer to the
Earth, the planetary rotation deviates the sunward convection drift and first
drives the plasma around the Earth before it reaches the dayside magneto-
sphere. Consequently, the plasmasheet particles cannot approach the Earth
closer than several Earth’s radii. Near the inner edge, the plasma has still
gained energy, and particles with hundreds of keV have been detected in the
ring current and in the radiation belt (see Sect. 1). Indeed, in inhomogeneous
magnetic configurations involving curvatures and gradients like the terres-
trial dipole, the particles additionally experience magnetic drifts around the
Earth perpendicularly to the magnetic field. Negligible for low-energy parti-
cles, only driven by convection, the gradient and curvature drifts dominate
the motion of energetic particles, which become trapped on closed orbits
around the Earth. As ions and electrons are drifting in opposite directions,
they generate a net transverse current, the ring current. Finally, the inner-
most magnetospheric region, the plasmasphere, does not remain empty, but
its population is not related to the solar wind. It is filled with cold particles of
ionospheric origin that have escaped along magnetic field lines and are drift-
ing on closed orbits around the Earth. This cold plasmaspheric plasma, close
to the Earth, is predominantly dragged by the co-rotation with the Earth,
which largely exceeds any convection or magnetic drift effect.

After having completed this brief description of the magnetospheric pop-
ulations, we come back here to the nightside plasmasheet. During their sun-
ward transport, the plasmasheet flux tubes injected from the distant tail
are losing particles by collisions with the upper atmospheric layers: this is
the process of ”precipitation” into the ionosphere. Excited by collisions, the
atmospheric constituents then relax by emitting these beautiful radiations,
dominated by the oxygen green line and visible in the high-latitude sky: the
aurora borealis and australis. As explained above, the plasmasheet flux tubes,
first drifting earthward from the distant tail, are then deviated around the
Earth toward the dayside magnetopause. The continuous precipitation at
their footprints traces luminous paths in the atmosphere which form these
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two auroral belts permanently present around the poles. The solar origin of
the particles responsible for auroras explains the observed correlations of the
location, width or intensity of the auroral ovals with the solar activity.

Spectacular luminous displays, the auroral ovals also mark the location
of the most intense currents and fields detected in the terrestrial ionosphere.
This enhanced electrodynamics results from close couplings between the auro-
ral ionosphere and the plasmasheet. They are achieved via the magnetic field
lines embedded into the dilute energetic plasmasheet plasma and connected
at their ends to the dense and cold ionosphere. The magnetic field lines enable
plasma exchanges between the ionosphere and the magnetosphere, such as the
precipitation of plasmasheet particles into the ionosphere, or conversely, the
escape of ionospheric particles into the magnetosphere. They drive currents,
and these field-aligned currents ensure the important role to connect and to
close currents flowing inside the thin ionospheric conductive shell around the
Earth with the plasmasheet curents across the magnetospheric tail: a large-
scale current circuit is built between the ionosphere and the plasmasheet.
Electric fields are also transmitted along the magnetic field lines between
both regions. All these couplings between the auroral ionosphere and the
plasmasheet and the feedback effects between both regions contribute to en-
hance the auroral electrodynamics.

In summary, the dynamic pressure, dominant energy source stored in the
solar wind, does govern the solar wind motion and its interactions with the
terrestrial dipole. Fluid theories successfully predict the formation and the
shape of the bow shock and of the magnetopause, the solar wind flow and
magnetic configuration around the obstacle, etc... The contribution of the so-
lar wind magnetic pressure only plays a secondary role in terms of energetics.
However, the reconnection processes that take place between the terrestrial
and interplanetary magnetic fields have huge consequences for the initially
empty magnetospheric cavity. First designed by Dungey (1961), this con-
cept of a reconnecting magnetosphere successfully explains various features
observed in the terrestrial magnetosphere, mainly:

• the penetration of solar wind plasma inside the magnetosphere,
• the generation inside the magnetospheric cavity of a large-scale plasma

circulation or ”convection”, which contributes to transport the plasma
and to populate different regions of the magnetosphere,

• the ultimate formation of two auroral ovals around the poles, and their
dynamics correlated to the solar activity.

The global dynamics of the solar wind/magnetosphere interactions is ap-
proached quantitatively from fluid models. Of course, the physical description
and the simulation of the reconnection processes themselves remain out of
their scope because the fluid approximations are not satisfied near the recon-
nection sites. However, they provide a useful tool to describe or to predict the
large-scale distribution of the magnetospheric plasmas and fields, the plasma
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transport by convection, the dynamical responses to solar wind variations, the
development and propagation of localized or time-dependent events. (Harel
et al., 1981; Peymirat and Fontaine, 1994).

5 An Impulsive Reconnection?

From this global understanding of the magnetospheric structure and dynam-
ics, further complexities can be pointed out. Strongly structured by the plan-
etary magnetic field and by internal plasma regions closely connected to the
ionosphere on one hand, the magnetosphere experiences on the other hand
the effects of the solar wind. The high solar wind variability, as observed at
the Earth’s orbit, questions the stability of the magnetopause, equilibrium
interface between the solar wind and the magnetosphere, and consequently
the stability of the plasma regions inside the magnetospheric cavity. The in-
terplanetary magnetic field is playing a central role in reconnection processes
and its variability is expected not only to modify their nature or their dy-
namics but also to alter the subsequent penetration of solar particles and the
convection motion inside the magnetosphere.

Observations from spaceborne or ground-based instruments have revealed
the occurrence near the magnetopause and in other magnetospheric and iono-
spheric regions of small time-scale, transient or bursty events, which can be
interpreted as the signature of impulsive reconnection. This is briefly illus-
trated in the two following examples.

Flux Transfer Events (FTE). Among the best-known small-scale tran-
sient events, the so-called Flux Transfer Events (FTE) were first discovered
at the dayside magnetopause by Russell and Elphic (1979). In addition to
their characteristic bipolar magnetic signature, both energetic particles of
magnetospheric origin and lower-energy particles from the solar wind are si-
multaneously detected in FTEs. A scenario often suggested at the origin of
FTEs assumes the transient formation of an X-type reconnection point at the
magnetopause as illust ated in Fig. 8: a terrestrial magnetic flux tube, initially
closed, opens and merges with an interplanetary magnetic flux tube into one
single flux tube filled with a mixed population as observed. Generally, the
FTEs do not occur as isolated events near the dayside magnetopause, but
they rather follow each other quasiperiodically. Their statistical recurrence
rate varies between about 2 min. to 16 min., with a mean value of 8 min.
(Lockwood et al., 1993). Several FTE models, involving one isolated recon-
nected flux tube or more complex reconnection pictures with multiple tubes
more or less twisted, are presently competing. However, most of them agree
on possible reconnection sites located on the dayside magnetopause near the
subsolar region and preferably in presence of a southward IMF component.
These are only favorable conditions and they admit large departures. From
the reconnection site, the newly reconnected tubes, with one end immersed
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in the solar wind and the other one connected to the planet , are then trans-
ported antisunward above the polar caps.

Fig. 8. Sketch illustrating the reconnection between an oblique interplanetary mag-
netic field line and a dipolar magnetic field line (adapted from Onsager and Fuselier,
1994)

FTEs are predicted to produce distinct signatures at their ionospheric
footprints (in the region of the polar cusps) after a time delay correspond-
ing to the Alfvén travel time from the reconnection site to the conjugated
ionosphere (∼ 2 min.) (Southwood, 1987). Indeed, in the high-latitude iono-
sphere near noon, ground-based optical instruments have observed series of
polward moving auroral forms, created by precipitating particles in an en-
ergy range consistent with the solar wind plasma, while radars have detected
sporadic and intense bursts of plasma flows. Their repetition period compa-
rable to FTEs has been the deciding factor to recognize these events as the
signatures of newly reconnected tubes at the dayside magnetopause and then
fastly moving poleward (Sandholt et al., 1992). One striking feature is the
large potential drop inferred across these localized and short-lived structures:
occasionally, it may reach values comparable to the large-scale convection po-
tential drop across the magnetosphere ockwood et al., 1989). This raises fun-
damental questions on the nature of the reconnection processes: it is not yet
understood whether they operate with bursty transient events such as these
Flux Transfer Events, or with continuous phenomena as initially suggested,
or with a mixture of both (Cowley and Lokwood, 1992). These questions
address in turn the large-scale convection, precisely driven by the reconnec-
tion processes, its response to an impulsive or continuous excitation, and the
resulting flow dynami cs inside the magnetospheric cavity.
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Substorms. The term ”substorm” also designates impulsive and intense
events. They take place in the nightside plasmasheet, and if the onset is
probably very localized, their effects modify the global plasma distribution
and the large-scale magnetic configuration over several tens of Earth’s radii.
Their signature in the nightside ionosphere, very early identified from all-
sky cameras and ground-based magnetometer arrays, still remains relevant
nowadays (Akasofu, 1964). After a quiet sequence of auroral arcs smoothly
drifting equatorward in the nightside auroral oval, the sudden intensification
of the equatorward arc near midnight indicates the substorm onset. A bulge
of bright and active auroras then develops, it expands poleward and then
both eastward and westward around the pole, while magnetometers detect
an intense circulation of ionospheric currents: this is the expansion phase,
which can last a few tens of minutes. A longer recovery phase follows: the
auroral brightness is fading and the poleward edge of the auroral oval retreats
equatorward.

These substorm signatures in the auroral ionosphere imply a triggering
process in the nightside plasmasheet due to the strong coupling existing be-
tween both regions. Spacecraft observations at the geostationary orbit near
the plasmasheet inner edge also reveal a characteristic sequence of effects in
the midnight sector (Sauvaud and Winckler, 1980). Before the substorm on-
set, the magnetic field lines are progressively stretching tailward and the plas-
masheet is simultaneously getting thinner: the plasmasheet currents flowing
across the tail come closer to the Earth and intensify. Then occurs a brief and
spectacular phase, called ”dipolarization”, when the magnetic configuration
gets suddenly back to the initial dipolar configuration. At the geostationary
orbit and in the midnight sector, it is accompanied by dispersionless injec-
tions of energetic particles, thus indicating the close location of an injection
boundary or a simultaneous propagation with the dipolarization. Observa-
tions at larger distances in the tail report similar plasmasheet thinnings and
frequently fast tailward flows. They provide evidences that substorm effects
do not remain confined to the auroral oval or to the inner plasmasheet but
deeply modify the whole magnetotail configuration.

Despite the number of observations accumulated since a few decades in
various regions of the terrestrial environment, the fundamental questions con-
cerning major magnetospheric events like substorms remain unsolved. The ul-
timate triggering processes are not definitely identified. It is often admitted
that the solar wind might play an important role. Occasionally, correlations
can been found with southward turnings of the interplanetary magnetic field,
which provide favorable conditions to an increase of the reconnection rate at
the dayside magnetopause. However substorms also occur in many other con-
ditions. Moreover, the nature of the processes occurring at the onset, and even
the location or the extension of the onset region, still remain controversial.
Modeling efforts have explored various working assumptions (Lui, 1991). One
of the most widespread models suggests the formation of an X-type recon-
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nection point, or rather of an X-line, possibly in the near-Earth plasmasheet
at an estimated distance between 10 and 30 Earth’s radii: it would account
for the plasmasheet thinning, for the earthward injection and auroral pre-
cipitation of energetic particles on one side of the neutral line and for the
tailward expulsion of fast flows on the other side. Other models assume an
eventual failure of the magnetospheric magnetic configuration to support the
observed intensification of the cross-tail currents, thus causing the disruption
of these currents and their deflection into the auroral ionosphere. Instabilities
(tearing mode, ballooning mode, ...) are also mentioned as possible causes for
substorm onset.

Although very different, FTEs and substorms share similar features. They
are not only impulsive and transient events localized on the dayside or in the
nightside plasmasheet. Because their effects propagate to the major part of
the magnetosphere and deeply modify its magnetic configuration and the
plasma transport, both appear as major magnetospheric events. Despite the
numerous observations accumulated for years, fundamental questions remain
unsolved. The nature of the triggering processes, the location, characteristics
and dynamics of the onset region are not definitely identified. Different work-
ing assumptions presently address crucial problems, such as the conditions
for magnetic reconnection or other mechanisms to develop at magnetospheric
plasma boundaries, the relative contribution of bursty localized events and
of quasi-steady large-scale effects, the response of the magnetospheric plasma
and of the global convection transport to these processes.

6 Conclusions

The existence of the magnetospheric cavity around a planet depends on the
dominant energy sources stored in the interacting bodies: the planet and the
surrounding interplanetary medium. In the case of the Earth, the internal
magnetic field sets a magnetic obstacle against the dynamic pressure exerted
by the supersonic super-Alfvénic flow of solar wind. Upstream from the mag-
netosphere, the bow shock contributes to decelerate the solar wind at subsonic
and sub-Alfvénic velocities such that the flow can be deflected around the
obstacle. The magnetosphere’s boundary, the magnetopause, prevents both
the penetration of solar wind particles inside the cavity and the diffusion
of the planetary field outside. Like a Faraday cage, the currents flowing at
the magnetopause act as a shield for the terrestrial environment against the
interplanetary medium.

The magnetopause location can be simply estimated in the framework
of fluid theories from the equilibrium conditions at the magnetopause bal-
ancing the solar wind dynamic pressure and the magnetospheric magnetic
pressure. The simulations of these conditions reproduce satisfactorily the ob-
served magnetopause shape, compressed on the dayside and elongated to
large distances on the nightside, the solar wind flow around the magneto-
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spheric obstacle and the draping of interplanetary magnetic field lines around
it.

Spacecraft observations inside the magnetosphere reveal the presence of
plasmas, electric fields; in particular, two auroral ovals permanently encir-
cling the poles exhibit variations correlated with solar activity. They suggest
that the shielding effect of the magnetopause is imperfect, and that mass,
momentum and energy transfers take place between the solar wind and the
magnetosphere. This assumption does not contradict the first and successful
approach based on an analysis of the dominant energy sources stored in the
planet and in the interplanetary medium. It rather suggests a more compre-
hensive description including secondary processes in terms of energetics. In
this regard, the magnetized feature of the solar wind plasma plays a central
role. The interplanetary magnetic field fluctuates and its interaction with the
terrestrial magnetic field may produce an X-type reconnection figure if they
happen to be equal and opposite at some places. Such configurations are
responsible for the solar plasma entry into the magnetosphere. This is the
concept of open magnetosphere first proposed by Dungey (1961).

Secondary regarding the energetics, reconnection processes have huge im-
plications for the magnetosphere. The first of them is certainly to provide
a particle source of solar origin in addition of the ionosphere, which is the
only internal plasma source in the terrestrial magnetosphere. This solar wind
plasma entry is accompanied by a momentum transfer which excites a large-
scale ”convection” motion inside the magnetosphere: the plasma describes
two vortices involving an antisunward flow above each pole closed by a re-
turn motion in the sunward direction in the internal regions of the mag-
netosphere. Driven by the convection motion, the solar particles that have
penetrated into the magnetosphere have then access to different parts of the
magnetosphere and contribute to populate them. For example, the bound-
ary layers just inside the magnetopause, and thus at proximity of the entry
regions, reveal density and energy characteristics very similar to the solar
wind. In the plasmasheet extended around the equatorial plane, the particles
have gained energy by adiabatic heating during their sunward transport in
the inner part of the magnetosphere. Some of them collide with the upper
atmospheric layers and excite neutral constituents which relax by emitting
these spectacular auroras, visible in the high-latitude sky.

Finally, the model of reconnecting magnetosphere provides a successful
guideline to explain the global plasma and field distributions observed in
the magnetosphere and in the ionosphere. It is mainly based on the opening
of the magnetosphere and on the existence of mass, momentum and energy
transfers with the solar wind, which then excite a large-scale convection mo-
tion inside the magnetospheric cavity. Despite the number of observations
accumulated in various regions of the magnetosphere, the involved transfer
processes remain poorly understood. An impulsive picture is progressively
adding to or substituting for the smooth and quasi-steady description. For
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example, repeated series of the so-called Flux Transfer Events discovered at
the dayside magnetopause are interpreted as the signature of an impulsive
and bursty reconnection, induced by the solar wind variability. Reconnection
processes are also involved in substorms, these impulsive and bursty events
that occur in the nightside magnetotail and deeply modify the configuration
of a major part of the magnetosphere. Their various phases follow very char-
acteristic sequences observed since a long time in the magnetosphere and in
the ionosphere. However, for such fundamental phenomena, the crucial ques-
tions on the triggering factors, on the nature of the involved processes, even
on their precise location are not yet elucidated. They are at the root of the
motivations for a three-dimensional exploration of the magnetosphere and of
its plasma boundaries as proposed by the CLUSTER mission (2000).
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Abstract. We describe a new self-consistent kinetic approach of collisionless plas-
mas. The basic equations are obtained from a linearization of the cyclotron and
bounce averaged Vlasov and Maxwell equations. In the low frequency limit the
Gauss equation is shown to be equivalent to the Quasi-Neutrality Condition (QNC).
First we describe the work of Hurricane et al., 1995b, who investigated the effect
of stochasticity on the stability of ballooning modes. An expression for the energy
principle is obtained in the stochastic case, with comparisons with the adiabatic
case. Notably, we show how the non adiabaticity of ions allows to recover a MHD-
like theory with a modification of the polytropic index, for waves with frequencies
smaller than the bounce frequency of protons. The stochasticity of protons can be
due, in the far plasma sheet (beyond 10-12 RE , RE being the Earth radius), to
the development of thin Current Sheet (CS) with a curvature radius that becomes
smaller than the ion Larmor radius. Conversely the near Earth plasma sheet (6-8
RE), where the curvature radius is larger, is expected to be in the adiabatic regime.
We give a description of slowly evolving (quasi-static) magnetic configurations, dur-
ing the formation of high altitudes CS’s, for instance during substorm growth phase
in the Earth magnetosphere, and tentatively during the formation of CS’s in the
solar corona. Thanks to the use of a simple equilibrium magnetic field, a 2D dipole,
the linear electromagnetic perturbations are computed analytically as functions of
a forcing electrical current. The QNC, which is valid for long perpendicular wave-
length electromagnetic perturbations (k⊥λD � 1 where λD is the Debye length),
is developed via an expansion in the small parameter Te/Ti. To the lowest order in
Te/Ti (Te/Ti → 0) we find that the enforcement of the QNC implies the presence
of an electrostatic potential which is constant along the field line, but varies across
it. The corresponding potential electric field is perpendicular to the magnetic field;
it corresponds to the self-consistent response of the plasma to an externally applied
time varying perturbation. This potential electric field tends to reduce the effect
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of the induced electric field, hence producing a partial “shielding” of the motion
that would correspond to the induced electric field if it was alone. The effect of the
total azimuthal electric field, obtained from the QNC, on the radial transport of
the plasma is investigated. We show that the direction of the perpendicular electric
field varies with the latitude. As a consequence, for a time dependent transport, the
equatorial electric field cannot usually be mapped onto the low altitude electric field
(ionosphere for the Earth), even in the absence of a parallel electric field. Present
calculations show that during the substorm growth phase, the (total) azimuthal
electric field is directed eastward, close to the equator, and westward off-equator.
Thus, large equatorial pitch-angle particles drift tailward whereas small pitch-angle
particles drift earthward. Finally, to the next order in Te/Ti, we show that the
formation of the thin current sheet lead to the development of a finite parallel
electric field. Thus time variations in high altitude CS’s are coupled to the low alti-
tude regions (ionosphere for the Earth) via (i) an electrostatic component constant
along the magnetic field line and via (ii) the parallel electric fields. Associated with
this parallel electric field, a parallel current develops. We suggest that this current
drives an instability at frequencies well above that imposed by the forcing current.
Unstable waves are electromagnetic and have frequencies of the order of the proton
gyrofrequency. Given their large amplitudes these waves can produce a fast electron
and ion diffusion which modify the electrical currents in a such manner that the
reconfiguration of the magnetic field occurs.

1 Introduction

Sudden releases of large amounts of magnetic energy, presumably due to
plasma instabilities, occur in many different contexts: solar flares, magneto-
spheric substorms, “saw-tooth” events (tokamak). In all cases, the plasma
confinement is lost; over a short time interval particles (electrons and pro-
tons) are heated/accelerated, and powerful non thermal radiations are emit-
ted. Before the rapid release of energy, a quasi-static stage is observed as
evidenced by the formation of a thin Current Sheet (CS). Since it gives a
self-consistent global picture of plasma dynamics, one can be tempted to use
the Magneto-HydroDynamics (MHD) to describe this energy release. If the
characteristic time between binary collisions is much shorter than the time
variations associated with the energy release, the regime is collisional wich
ensures that MHD is a valid description. Conversely, in a collisionless regime
the conditions of validity of MHD are quite restrictive, in particular for an
inhomogeneous plasma, as we will see later on. For the Earth’s plasma sheet,
where substorms take place, the plasma is always collisionless; the mean-free
path for binary collisions between particles is larger than the size of the mag-
netosphere. In Tokamaks the fast dynamical events, the so-called “saw-tooth”
events, that correspond to a decrease in the current, and to a loss of confine-
ment, occur over a time scale too short to be controled by collisions. In the
solar corona it is difficult to estimate the typical size of active regions and
to compare it with the mean free path between binary collisions. In a colli-
sionless plasma, ideal MHD does not allow for magnetic reconfiguration, thus
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some form of departure from ideal MHD is often assumed to take place in a so
called diffusion region, thereby allowing cross-B diffusion and initiating mag-
netic reconnection. Several authors assume the existence of an “anomalous”
parallel resistivity to introduce a relation between the parallel current and
the parallel electric field, as if there were a resistivity that would allow for the
departure from ideal MHD. The concept of an “anomalous” parallel resistiv-
ity was developed by Sagdeev and Galeev who suggested that it could result
from the emission, by electrons, of plasma waves driven unstable by a field
aligned current, followed by the absorption, by ions, of these waves [1]. While
interesting as a concept, this idea has not been confirmed by numerical sim-
ulations; various attempts made to give evidence for a stationary resistivity
along the field lines failed [2]. Therefore one should not invoke an anoma-
lous resistivity associated with waves-particle interactions to justify the use
of non ideal MHD in a collisionless regime. There are also other difficulties,
associated with the geometry, that restrict the validity of MHD. In a mirror
geometry like magnetic field lines in the solar corona or in planetary magneto-
spheres, during non-stationary events such as solar flares or substorms, there
are important reasons why the usual MHD approach may fail. Classically,
the use of MHD equations (Ohm’s law) implies the following restricting con-
ditions on the frequency and on the wave length of the perturbations: ω < Ω
and k⊥ρ < 1 (Ω being the gyrofrequency, k⊥ the perpendicular component of
the wave vector and ρ the Larmor radius). Moreover, the system of momen-
tum equations deduced from Liouville’s equation is a priori infinite, thus one
has to close it with an equation of state, which is equivalent to fixing a well
defined relation between the LOCAL values of the parameters. For instance
one often assumes that the divergence of the heat flux is null, which cor-
responds to the classical adiabatic approximation (thermodynamical sense).
The equation of state being a local approximation, it is not valid when there
are resonances, which introduce non-local effects. In the case of an homoge-
neous equilibrium, the description of electromagnetic perturbations by MHD
equations, with an adiabatic closure equation, are valid, as long as there are
very few resonant particles, which is achieved as soon as the resonant velocity
is much larger than the thermal velocity: vres � vth (the thermal velocity).
This can be rewritten: ω � k‖vth for Landau resonance (or ω−nΩi � k‖vth

for cyclotron resonances, k‖ being the parallel component of the wave vec-
tor and Ωi being the ion gyrofrequency). This condition ensures that there
are few resonant particles; one can therefore neglect Landau (and cyclotron)
damping. It gives a low limit for the frequency of the studied perturbation
In an inhomogeneous medium, however, there are other limitations, associ-
ated for instance with field line curvature, and the associated bounce motion.
See also discussions on the importance of these resonances in [3], [4],[5] and
[6]. For instance, as soon as the parallel wave length of the pertubations is
equivalent to L‖, the length of the magnetic field line, the above condition
writes ω � vth/L‖ � ωb ( ωb being the particle bounce frequency). Then, the
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bounce frequency of electrons (and ions) is a low limit for the use of MHD
equations and the full conditions of validity write : ωb < ω < Ωi.

Thus, against a widely spread wisdom, MHD is not a priori valid to de-
scribe the low frequency perturbations (ω < ωb) associated with the magnetic
field reconfiguration in a collisionless plasma. In view of what has just been
said, the ratio between the collision frequency and the electron bounce time
can be used as a test to know whether the regime is collisional or collisionless.
Thus in order to find whether magnetic reconfiguration is controled by colli-
sions or is occuring in a collisionless regime, we have compared the electron-
electron collision frequency with the electron bounce frequency through CS’s.
Estimates of the electron density versus altitude, in the solar corona, are
given in a companion paper by Demoulin and Klein [7]. Adopting the values
given in the figure 4 and the table 2 of Demoulin and Klein, and assuming
a temperature of 100 eV at and beyond 1.1 RS (RS being the solar radius),
we concur with their conclusion, and find that the low altitude Loops (R
≥ 1.1 RS , N � 109 to 1010 cm−3) are dominated by collisions, because the
electron-electron collision frequency (the largest of the collision frequencies)
is: νee � 50 to 500 s−1, which is much larger than the electron bounce fre-
quency: fbe � 4 × 10−2 s−1. Conversely for the Streamers: R ≥ 3-10 RS , N
� 5× 105 to 5× 106 cm−3, the collision frequency: νee � 0.025 to 0.25 s−1, is
of the order of the electron bounce frequency through the CS: fbe � 0.04 s−1,
for 100 eV and for a CS thickness of 108 m. Thus electron bounce can occur
at least inside the CS and has to be taken into account to write the QNC as
described below (Sect. 3), irrespective of collisions. For Sheets (R � 1.5 to 2
RS), the density is 107 to 108 cm−3, at an altitude between 1.5 and 2 RS .
With these parameters the collision frequency seems to be still larger than the
bounce frequency of electrons. It is obvious, however, that some strong pres-
sure gradient/pressure anisotropy is needed to producee these thin currents
sheets, and that the electron thermal energy is enhanced (few keV, few tens
of keV?) inside the CS. Observations show that before the energy dissipation
occurs, the CS gets thinner and thinner ( see [8] and references therein). It
is difficult to understand how an increasingly thin CS can be produced in
a collisional regime. Similarly the existence of a non-thermal radiation gen-
erated in these regions proves that collisionless processes are important in
determining the dynamics of active solar events. In the rest of the paper we
will consider the collisionless regime which certainly applies to the Earth’s
plasma sheet and seems to apply to Streamers and possibly to Sheets, but
not to Loops.

From the observational point of view, it is easier to estimate the rate of
energy dissipation occuring during solar flares or substorms than the electron-
electron collision frequency; therefore another way (independently of the esti-
mation of the electron-electron collisions ) to check if the regime is collisional
or collisionless is to compare this rate of energy dissipation with the electron
bounce period. For the Earth’s magnetosphere, at 7 RE (RE = Earth radius),
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τb is typically 1 sec for energetic electrons (1 keV) and 50 sec for ions (10
keV), this latter time is precisely the characteristic time of dissipation. With
the values quoted above, taken from Demoulin and Klein (this issue), we get,
for Streamers and Sheets: Tbe � 25 s and Tbi � 15 mn. The solar events oc-
cur on a time scales of 102 - 103 s, comparable to Tbi, but apparently larger
than the collision time. The hard X-ray-spikes and the radio-spikes, however,
occur over much shorter time scale; 10−1 s, and 10−2 s, respectively, compa-
rable to the electron bounce time through the CS. Then electron dynamics is
probably not controled by collisions. The case of ions is a little more difficult.
Indeed, even if the ion bounce period is shorter than the characteristic time
of dissipation, the ion dynamics may be “collision like” due to the stochastic-
ity, which occurs when the curvature radius is equivalent to the ion Larmor
radius. In this case, a strong pitch-angle scatterring occurs for each crossing
of the magnetic equatorial plane and plays the role of “pseudo-collisions” [9].
The pitch-angle scattering may be also produced by wave interaction with
“high-frequency” ion-cyclotron waves that can eventually be present in the
medium. For resonant ion-cyclotron waves with an amplitude of the order
of 1 % of the static magnetic field, as observed in situ at magnetospheric
substorms (δB/B � 10−2), a resonant velocity of the order of the Alfvén ve-
locity, and a spectral width Δω � ωH+ ( ωH+ the proton gyropulsation), one
gets a diffusion time of the order of 1 to 10 msec, shorter than the collision
time. However only in situ measurements will be able to provide an estimate
of the amplitude of resonant ion-cyclotron waves. The effect of pitch-angle
diffusion on the reconfiguration of the magnetic field will be discussed later
on.

The second most important limitation of MHD is the implicit assump-
tion that the electric field component parallel to the magnetic field lines is
null. During substorms, there are some strong, though indirect evidences, for
field-aligned potential drops. In particular large potential drops have been
found above the auroral ionosphere within an altitude range of 5000-15000
km, causing the energization of the electrons responsible for the aurorae. In
this region, the parallel electric field may be large. In the case of the Earth’s
magnetosphere, an indirect evidence for parallel electric fields is provided by
electrons beams observed near the magnetic equator during and after sub-
storm breakup [10, 11]. We are not aware of direct/indirect evidence for par-
allel E-fields, in the solar corona, though X-ray emissions imply the existence
of accelerated/highly non-thermal electrons [12].

Thus we conclude from the above discussion that in the Earth plasma
sheet, the plasma is undoubtely collisionless during all phases of the sub-
storm, and that MHD is not valid for the description of substorm growth-
phase (formation of a CS) and breakup (magnetic reconfiguration). Indeed,
the caracteristic times of these phases are longer than the electron (and ion)
bounce frequency. Regarding reconnection in the solar corona it seems dif-
ficult to give a definitive answer without carying out in situ measurements.
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The previous discussion suggests that Loops are likely to be in a collisional
regime, and can therefore be described by MHD. The magnetic pressure being
much larger than the kinetic, the regime is force free, for Loops. Conversely
at higher altitudes (beyond 1.5 RS) the pressure gradient and and/or thermal
anisotropy should be large enough to withstand thin CS’s. Inside these CS’s
the temperature is higher and the electron bounce period across the CS an/or
ion resonant diffusion is/are likely to occur over time shorter than collisions.
Thus MHD is not a priori applicable; a kinetic theory is needed.

The first attempt to describe substorm as the result of the spontaneous
development of a kinetic instability was made, longtime ago, by Coppi et
al. (1966) who suggested that collisionless tearing modes can develop in the
geomagnetic tail, for a simple geometry with no magnetic field across the
sheet [13]. Later Lembege and Pellat (1982) have shown that even a very
small perpendicular magnetic field component stabilizes the tearing modes.
More generally the electron finite compressibility has been shown to prevent
the development of tearing modes [14]. Thus another collisionless process
has to be identified. The purpose of the present paper is to present a new
approach of collisionless magnetic reconfiguration based upon the study of
low frequency (ω < ωb) electromagnetic perturbations in the direction of the
equilibrium current.

2 The Bounce Averaged Solution
of the Linearized Vlasov Equation

In this section, we give the gyrokinetic solution to the Vlasov equation, which
allows for the development of perturbations with k⊥ρ � 1 (k⊥ being the wave
number across the field and ρ the particle Larmor radius) [15]. Assuming that
the electromagnetic perturbation is periodic in time and in space (across to
the field line) we take:

δΦ(r, t), δA(r, t) = δ̂Φ(k⊥, ω, l), δ̂A(k⊥, ω, l) exp (i(k⊥ · r⊥ + ωt)) ,

where r (resp. k⊥) is the position vector (resp. the wave vector) and ⊥ denotes
the component perpendicular to the magnetic field. For the sake of simplicity
we omit thê symbol and the exponential factor in the following formulas,
then the linearized response δf is given by:

δf = q
∂f0
∂E

(
δΦ− uyδAy +

(
1 +

ω�

ω

)
λe−iS −

(
1 +

ω�

ω

)
g
)

(1)

where f0(E, py) is the equilibrium distribution function (E is the particle
energy and py the canonical momentum), uy is the diamagnetic drift velocity,
ω� = kyuy is the diamagnetic drift frequency (for more details about ω� see
for instance [16]), ky is the wave number in the y-direction (azimuthal). We
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work in local field-aligned coordinates defined by the triad of unit vectors:

eχ =
B

B
, eψ =

∇ψ

|∇ψ| and ey = eχ × eψ. (2)

In this frame, the velocity becomes:

v = |v⊥|(eψ cos ξ + ey sin ξ) + v‖eχ. (3)

To obtain the linear response (1), a change of variables (vψ, vy, v‖) → (E,
μ, ξ) has been made, where E = 1

2mv
2
‖ + μB is the kinetic energy, μ =

1/2mv2
⊥/B is the magnetic moment and ξ is the gyrophase angle. The elemen-

tary volume in velocity space becomes d3v =
∑

σ=−1,+1BdEdμdξ/(m
2|v‖|)

where σ = sign(v‖) (for more details see [17, 18, 19, 20]). In (1), the function
g contains the non local wave-particle interaction. To the first order in ω/ωb,
the function g becomes

g = e−iS

(
ω

ω + ωd
H + σiω

∫
dl

|v‖|
[
H − ω + ωd

ω + ωd
H

])
, (4)

S = k⊥v⊥ sin(αk − ξ)/Ω, αk = Arctan(kψ/ky), Ω is the cyclotron frequency,
ωd = kyvd is the gradient-curvature drift frequency, the upper bar denotes
bounce averaging and H is given by:

H = J0 (δΦ− vdδAy) +
(ω + ωd)

ω
λ+ iJ1v⊥

(
kψ

k⊥
δAy − ky

k⊥
δAψ

)
, (5)

where λ = iω
∫ l
dl′J0δA‖ and Jn are Bessel functions of argument k⊥|v⊥|/Ω.

In the next section we substitute the linearized solution of the Vlasov equa-
tion into the QNC. The bounce averaged linear solution of Vlasov equation
obtained here is similar to those developed and used by different authors e.g.
[21, 5, 4].

3 The Quasi-neutrality Condition

In this section, we develop the QNC via an expansion in the small parameter
Te/Ti. The validity of this expansion for the Earth’s magnetotail is suggested
by several observations indicating that this ratio is small in the magnetotail.
For instance, a statistical study of current disruptions from AMPTE/CCE
when the spacecraft was in the near-Earth current sheet is presented in [22].
The authors showed that the electron to proton temperature ratio is in the
range of 0.11 to 0.57. They pointed out that these values are higher than
those reported in [23] based on IRM data. Indeed, data presented in [23],
yield average plasma properties, notably an electron to proton temperature
ratio in the range: 0.09-0.18. These authors also noticed that this ratio is
nearly the same as the one found in [24] at distances of |X|=30-60 RE . More
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recently, during a dusk-dawn crossing of the near-Earth tail by GEOTAIL,
during a relatively quiet period, a ratio around 0.2 was measured [25]. In
any cases, it is therefore possible to consider Te/Ti as a small parameter over
a wide range of radial distances from the Earth, and for different levels of
activity.

We do not know whether this assumption is valid for solar flare conditions
but it is possible to develop the QNC without this assumption [20].

From the linear response of the plasma (equations 1 to 5) and assum-
ing that f0 is a maxwellian distribution function (f0 = n0 (m/(2πT ))3/2 ×
exp−(E/T )), the QNC:

∑
j=i,e qj

∫
d3v δfj � 0 can be written:

∑
j=i,e

(
qj
mj

)2
1
Tj

∫
4πBdEdμ

|v‖| f0j ×
[
δΦ+

(
ω + ω�

ω
λ− ω + ω�

ω + ωd
H

)
J0

]
j

� 0

(6)

where we have performed the gyrophase integration and summed over stream-
ing and anti-streaming velocities. This latter operation cancels out the part
of δf that is an odd function of σ. The above relation was derived earlier in
[20], where more details are given about the derivation. The gauge δAy = 0
has been chosen. for the sake of simplicity, the usual wave length ordering
k⊥ρj � 1 is made. In this limit, the Bessel functions become J0 � 1 and
J1 � k⊥|v⊥|/2Ω, and the expression for H simplifies; we get:

H = δΦ+ λ+Ξ where Ξ =
ωdλ

ω
− i

μkyδAψ

q
. (7)

Then, after some algebraic manipulations, the QNC can be written as

∑
j=i,e

(
qj
mj

)2
1
Tj

∫
4πBdEdμ

|v‖| f0j

[
(δΦ− δΦ) + (λ− λ)

]
=

−
∑
j=i,e

(
qj
mj

)2
1
Tj

∫
4πBdEdμ

|v‖| f0j

[
ωdj − ω�j

ω + ωdj

(
δΦ+ λ

)
− ω + ω�j

ω + ωdj

(
Ξj

)]
, (8)

where the terms ω�jλ cancel between electrons and ions, because uyi/Ti +
uye/Te = 0, [20]. Note that the diamagnetic drift frequency and the purely
magnetic drift frequency of electrons can easily be related to the correspond-
ing terms for ions: ωth

de(α) = −Te/Ti ω
th
di (α) and ω�e = −Te/Ti ω�i (where th

means thermal quantities and α denotes the particle pitch-angle). The QNC
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becomes :∫
4πBdEdμ
m2

e|v‖| f0e

[
(δΦ− δΦ) + (λ− λ) +

Te

Ti

(
δΦ− δΦ) + (λ− λ)

)]
=

Te

Ti

∫
4πBdEdμ
m2

i |v‖| f0i

[
ωdi (ωdi − ω�i)
ω(ω + ωdi)

(
δΦ+ λ

)
+
ω�i − ωdi

ω + ωdi

(
Ξi

)]
. (9)

Since the RHS term of (9) is proportional to (Te/Ti), we get to the lowest
order in (Te/Ti):∫

4πBdEdμ
m2

e|v‖| f0e

[
(δΦ− δΦ) + (λ− λ)

]
= 0 +O(Te/Ti). (10)

A trivial solution of (10) is:

δΦ+ λ = Φ0(ψ, y) +O(Te/Ti), (11)

where Φ0 is constant for a given magnetic field line. This constant compo-
nent of the perturbed electrostatic potential is always taken to be equal to
zero (δΦ + λ = 0) in studies based on MHD. An external electrostatic field,
modeling the convection, is often added to the inductive part of the electric
field in order to better fit the data. In the present paper, we show that the
quasi-neutrality over the volume of the flux tube implies that Φ0 is different
from zero. We compute Φ0 in a self-consistent manner, as a function of the
electromagnetic perturbation defined by λ and δB‖. Integrating the QNC (9)
over the volume of the flux tube, we find∫

dl

B

[∫
4πBdEdμ
m2

i |v‖| f0i ×
[
ωdi (ωdi − ω�i)
ω(ω + ωdi)

(Φ0) +
ω�i − ωdi

ω + ωdi

(
Ξi

)]]
= 0,

(12)

where the LHS term of (9) has vanished thanks to the identity
∫
dl/B

∫
d3v

(X −X) = 0, valid for any function X(E, μ, l). Finally, Φ0 writes

Φ0 =

∫
dl
B

[∫ 4πBdEdμ
m2

i |v‖| f0i ×
[

ω�i−ωdi

ω+ωdi

(
Ξi

)]]
∫

dl
B

[∫ 4πBdEdμ
m2

i |v‖| f0i ×
[

ωdi(ω�i−ωdi)
ω(ω+ωdi)

]] . (13)

Now, we can calculate the self-consistent perturbed electric field. Taking into
account the implications of (11) to the lowest order in Te/Ti, the perturbed
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electric field δE = −∇(δΦ)−∂/∂t(δA), in the y-direction, becomes (remem-
bering that δAy = 0):

δEy = −iky(δΦ) = −iky(Φ0 − λ). (14)

Thus, the full perpendicular electric field, associated with the perturbation,
is the sum of an inductive component (λ) plus an electrostatic component
(Φ0) determined from the QNC. This electric field will produce a transport of
the plasma. Notice that this transport is different from a steady convection;
it is associated with an electromagnetic perturbation (see discussion in intro-
duction). The electrostatic component, associated with Φ0, tends to reduce
the effect of the inductive component of the electric field λ, thereby produc-
ing a partial shielding of the motion that would correspond to the inductive
electric field (if it was not shielded).

The expression λ = iω
∫ l
dl′δA‖ shows that the partial derivative of λ

with respect to l is equal to the inductive component of the parallel elec-
tric field (∂λ/∂l = ∂δA‖/∂t). Thus, locally and in the limit Te < Ti, (11)
implies that the inductive component of the parallel electric field ∂δA‖/∂t
is balanced by the parallel gradient of the perturbed electrostatic potential
∂δΦ/∂l. Hence, to the lowest order in Te/Ti < 1, (11) is equivalent to the
usual MHD approximation, where one assumes the absence of a parallel elec-
tric field (E‖ = −∂/∂l(δΦ + λ) = 0). In the present study, the absence of a
parallel electric field is not an assumption but an (approximate) result, ob-
tained by solving the QNC in the limit Te < Ti. We show, however, in Sect.
5.3, that a finite parallel electric field exists to the order Te/Ti and give some
important consequences of this parallel electric field.

Finally, the potential Φ0 affects the stability of the plasma as was demon-
strated in the simple electrostatic multipole case in [26]. In the next section,
we explore the effects of Φ0 on the stability, in a fully electromagnetic case.

4 Plasma Stability

4.1 Adiabatic Regime

With the expressions (1) to (5) for the linearized response of the plasma, one
can obtain a kinetic variational form by combining δf with Ampère’s law and
the QNC. The original variational form obtained in [15] does not take into
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account the existence of Φ0; it writes∫
dydψ

dl

B

|∇ × δA|2
μ0

= 2π
∑
j=i,e

( q
m

)2
∫
dydψdEdμ

∮
dl

|v‖|
(
f0
T

)
j

×
{

|φ|2 +
ω + ω�

ω

[
|λ+ I|2 − |I|2

]
+

(ω + ω�)ωd

ω2 |λ|2 − ω + ω�

ω + ωd

∣∣H∣∣2}
j

, (15)

where I = H − λ(ω + ωd)/ω and H given by (5). For details about the
derivation of (15) see [18]. With the wavelength ordering k⊥ρj � 1 and
including Φ0, the variational form becomes∫

dydψ
dl

B

|∇ × δA|2
μ0

= 2π
∑
j=i,e

( q
m

)2
∫
dydψdEdμ

∮
dl

|v‖|
(
f0
T

)
j

×
{

|Φ0|2 + (ω + ω�)
X

ky

2μB
q

(
Y +

∂X

∂ψ

)
+ (ω + ω�)ωd

∣∣∣∣Xky

∣∣∣∣2 − ω + ω�

ω + ωd

∣∣H∣∣2}
j

, (16)

where cross terms like XY are to be read as Re(XY �) and Re stands for
the real part, X = kyλ/ω, Y + ∂X/∂ψ = ikyδAψ/B. The X and Y vari-
ables are similar to those defined in [27] with ∇ × δA = ∇ × (ξ × B)
and defining X = Bξψ et Y = ikyξy (see also[19, 20]). The vector ξ is the
usual MHD displacement vector of the plasma from his equilibrium posi-
tion see [27]. From (11), the expression of H is now H = Φ0 + Ξ where
Ξ = (ωd/ω)λ − iμkyAψ/q. To obtain (16), we used the following expres-
sions for the local gradient-curvature drift frequency and diamagnetic drift
frequency respectively ωd = −(kyv‖m/JBq)∂(JBv‖)/∂ψ and ω� = kyp

′/qn0
[19, 20].

Performing the velocity space integration and taking into account the
expression (13) of Φ0, we obtain

δW =
∫
dydψ

dl

B

[
1
μ0

[(
∂X

∂l

)2

+
(
B

ky

∂Y

∂l

)2

+B2
(
Y +

∂X

∂ψ

)2
]

+ 2p′X
(
Y +

∂X

∂ψ

)
+ p′X2 ∂lnJ

∂ψ

]
+ 2π

( q
m

)2
∫
dydψdEdμ

∮
dl

|v‖|
(
f0
T

)
i

×
[
ωdi (ωdi − ω�i)
ω(ω + ωdi)

|Φ0|2 − ω + ω�i

ω + ωdi

∣∣Ξi

∣∣2] , (17)
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One should notice that the expression of δW is virtually identical to the δW
of Bernstein et al. (equation 6.16) with the following exceptions:

• there is no Z variable (the parallel fluid displacement) due to the bounce
averaging that takes place in the plasma response function,

• the compressibility term (the last term between brackets) is computing
by taking into account the existence of the Φ0.

4.2 Stochastic Regime

As mentioned in the introduction, when the local radius of curvature is of the
order of the thermal ion Larmor radius, the response of the ions is modified.
A stochastic ion experiences an apparently random pitch angle scattering on
each crossing midplane. This scattering is followed by adiabatic motion to
the bounce point and back to midplane. Hurricane et al. found that inclusion
of stochastic ion dynamics replaces the bounce averages in the gyrokinetic
solution with flux tube volume averages [18, 28]:

Q =

∫ lb
0

dl
v‖
Q∫ lb

0
dl
v‖

→ 〈Q〉 =

∫ E/Bn

0 dμ
∫ lb
0

dl
v‖
Q∫ E/Bn

0 dμ
∫ lb
0

dl
v‖

, (18)

where Q is any quantity, lb is the bounce point of an ion for a given value
of magnetic moment μ, Bn is the value of the magnetic field at the bounce
point. In this treatment, μ is a stochastic variable distributed with an uniform
probability; all quantities are which is averaged upon. In this regime, it is
possible to carry out the calculations and to compute explicitly Φ0 and δW .

With the frequency ordering ω > ω�, ωd and in the context of stochastic
dynamics, (13) becomes to the lowest (nonvanishing) order

Φ0 = ω

∫
dl
B

[∫ 4πBdEdμ
m2

i |v‖| f0i (ω�i − 〈ωdi〉) 〈Ξ〉
]

∫
dl
B

[∫ 4πBdEdμ
m2

i |v‖| f0i (ω�i〈ωdi〉) − (〈ωdi〉2)
] . (19)

After the velocity space integration (19) gives [20]

Φ0 =
ω

ky
C
v′

v′′ , (20)

where C is the flux tube average compressibility defined by

C =
∮
dl∇ · ξ/B∮
dl/B

=
∫
dl/B (X∂lnJ/∂ψ + Y + ∂X/∂ψ)∫

dl/B
, (21)

and

v′

v′′ =
∂
(
ln
∮

dl
B

)
∂ψ

. (22)
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Using (20) and changing the bounce averages of adiabatic theory by stochastic
averages defined by (18), the quadratic form becomes in the limit ky → ∞
but with k⊥ρi � 1 [20]:

δWs =
∫
dydψ

[∮
dl

B

(
∂X

∂l

)2

+ p′
(∮

dl

B
X2D −

(∮
dl
BXD

)2∮
dl
BD

)]
,

(23)

where the subscript “s” denotes “stochastic” and D = ∂lnJ/∂ψ−μ0p
′/B2 is

proportional to the magnetic field line curvature. By the Schwarz inequality,
the term in the large parentheses is positive if D is positive everywhere, and
negative if D is negative everywhere. In the Earth’s magnetotail, for instance,
the pressure gradient is directed toward the Earth (p′ < 0) and the curvature
is likely to be convex (D > 0) so that the second term is destabilizing and
could lead to δWs < 0, if the stabilizing contribution from ∂X/∂l was small
enough. Furthermore, one should notice that the inclusion of Φ0 modifies the
polytropic index of the plasma since the results without Φ0 are equivalent to
results with Φ0 when γp is changed by −p′v′/v′′ (where γ is the polytropic
index) [20].

In this stochastic regime, the particles pressure is isotropized by the pitch
angle scattering associated with the loss of adiabaticity. Finally, it can be
shown that the solution of the QNC, in the stochastic case (stochastic ions
and electrons), gives no parallel electric field. Indeed, in this case, the RHS
of equation (9) vanishes exactly. Thus, waves that develop in the magnetotail
(23) at distance large enough for ions and electrons to be non adiabatic can
be called “MHD–like” waves [18, 20].

5 Plasma Transport
During the Substorm Growth Phase

In the Earth’s magnetotail, one regularly observes a slow change in the mag-
netic configuration: the magnetic field lines are stretched corresponding to the
formation of a thin CS; this change will be modelled as a quasi-static per-
turbation. Therefore, in this section, we use the linear self-consistent kinetic
approach developed in the previous sections to study the transport of the
plasma in the NEPS, in response to quasi-static variations of the magnetic
field. Thus, the theory developed for electromagnetic perturbations with a
time scale longer than the bounce period of electrons and ions (ω � ωbe, ωbi),
and for spatial scales larger than the ion Larmor radius (k⊥ρ � 1) is applied.
Furthermore, we assume that ω � k‖vA, namely that the time scale of the
growth phase is large compared with typical travel time of Alvfén waves. Due
to this quasi-static assumption, a particular treatment of the Ampere’s law
has been done. Unlike substorm injection which is known to be a sudden
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process (ω ≥ ωbi) with a small spatial scale (ky → ∞), the build-up of a
tail-like configuration is a slow process (� 30 min) affecting a large fraction
of the tail (small ky). Thus the applied electromagnetic perturbation (during
growth phase) is not considered as being the consequence of a local internal
instability, as it is probably the case for breakup. The change from a dipole
to a tail-like configuration, instead, is considered as the result of the response
of the magnetotail to a quasi-static forcing caused by variations in the solar
wind (e.g. [29]). The full treatment of this problem is very difficult since it
would require a full description of the forcing caused by the solar wind, taking
into account the boundary conditions imposed at the magnetopause. More-
over, the way the solar wind drives the stretching of the magnetic field lines
is still not completely understood. To simplify, we assume that the change of
the dipolar field close to the Earth is due to an increase of the current further
out in the tail (e.g. [29]). Thus, to the lowest order in β (where β is the ratio
between the kinetic pressure and the magnetic pressure) the Ampere’s law
gives ∇×B = 0. To the next order, the linearization gives ∇×δB = μ0δjext

where δjext is a perturbed current located far from the dipolar region. In the
following subsection, we solve the first order of the Ampere’s law and give
the components of the perturbed electromagnetic field as a function of an
external forcing via an electrical current.

5.1 Ampère’s Law

Close to the Earth, we can neglect the local electrical currents which corre-
sponds to assuming β < 1. Thus, we can approximate the field by a dipole.
To allow us to carry out analytical calculations, we use a two-dimensional
(2D) dipole [30] to describe the equilibrium magnetic field. Using cylindrical
coordinates (r,θ,y) where θ is the colatitude, the 2D magnetic field model is
defined by:

B = − D̂

r2
(cos θur + sin θuθ) , (24)

where D̂ is the dipolar moment. The magnetic field strength is given by

B =
Beq

sin2 θ
, (25)

where Beq = D̂/L2, is the equatorial magnetic field strength, L is the equa-
torial-crossing distance of the relevant field line. For the 2D dipole, the local
coordinates become:

ψ = −D̂/L, y and χ = D̂ cot θ/L. (26)

It follows that B = ∇ψ × ey and the magnetic field strength is

B =
ψ2

D̂ sin2 (arccot (−χ/ψ))
. (27)
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The bounce period and the bounce average curvature-gradient magnetic drift
velocity are

τb =
2πL
v

and vd =
∮

dl

v‖
vd =

−2E
qLBeq

ey. (28)

Then, we perturb the dipolar equilibrium by an external current, flowing in
the westward direction and located far in the tail. The linearized Ampère’s
law becomes

∇ × δB = μ0δjextey (29)

We assume that

δB(r, t) = δ̂B((ψ, ky, l, ω) exp (i(kyy + ωt)) ,

for the sake of simplicity we omit thêsymbol and the exponential factor in
the following formulas. The external current δjext is defined by

δjext(L, ky, θ, ω) = δjeq(ky, ω)δ(L− Lc) sin2n θ
(
(2n+ 1) cot2 θ − 1

)
.
(30)

We have assumed that the current is highly localized in radial distance and
we choose, for simplicity, a Dirac function δ(L − Lc) where Lc is the radial
location of the forcing current. Therefore, we are interested in L values be-
tween 0 < L < Lc where the 2D dipole assumption is valid. Along the field
line, we have chosen a class of forcing current with a dependence that allows
us to obtain easily the magnetic field perturbation. This forcing current must
also correspond to an increase in the equatorial current as suggested by the
observations (e.g. [31, 32]). This class is labelled by an index n, the larger
n, the more localized is the perturbation close to the magnetic equator (see
Fig. 1). Comparison between results obtained for various n gives insight on
how sensitive the results are to the θ dependence of the forcing current. For
n = 0, the perturbed current is divergent at high latitudes but as we will
check later on, this divergence does not modify the results because the per-
turbed components of the electromagnetic field do not diverge. For the sake
of simplicity, in the course of the paper, we often use the case n = 0 to obtain
estimates of the various characteristic quantities.

After some algebra (described in Appendix A) and, in the limit |ky|L > 1
and |ky(L−Lc)| < 1, the perturbed components of the magnetic field write:

δBψ = −μ0|ky|δjeq(ky, ω)
2

L2
c

(
sin2n+1 θ cos θ

)
, (31)

δB‖ = −μ0δjeq(ky, ω)
2

L2
c

L
sin2n θ

(
(2n+ 1) − (2n+ 2) sin2 θ

)
× (H(L− Lc) −H(−(L− Lc))) , (32)
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Fig. 1. Variation of the external current δjyext(θ) ∝ sin2n θ
(
(2n + 1) cot2 θ − 1

)

versus the colatitude θ for n = 0, 1, 2, 3, 4.

where H is the Heaviside function. For λ, we obtain (Appendix A):

λn(L, ky, θ, ω) = λneq

(
cn(L, ky) + (sin2 θ)n+1) , (33)

where we have defined cn(L, ky) = (n + 1)!/(−|ky(L − Lc)|)n+1 and λneq =
1/(4(n+ 1))μ0(|ky|/ky)ωδjeq(ky, ω)L2

cL.
To obtain, the real components of the perturbed magnetic field, we have to

perform an inverse Fourier transform in time and in y. We find (see Appendix
B):

δBψ =
μ0

2
L2

c

(
sin2n+1 θ cos θ

)
P

(∫ ∞

−∞
dy′ δjeq(y′, t)

(y − y′)2

)
, (34)

δB‖ = − μ0

2
L2

c

L
sin2n θ

(
(2n+ 1) − (2n+ 2) sin2 θ

)
δjeq(y, t) (35)

× (H(L− Lc) −H(−(L− Lc))) , (36)

where P denotes the Cauchy principal value. Now, we have to specify the
variation of the forcing current in the y-direction. During the growth phase,
spacecraft observations close to midnight [33, 31, 34] show that the magnetic
field changes from a dipole-like configuration to a tail-like configuration. The
equatorial value of the magnetic field decreases whereas, off-equator, the ra-
dial component increases. The duration of this variation is typically about
30-45 minutes. Moreover, breakup is usually observed to start close to mid-
night in a longitudinally narrow sector while the rest of the magnetotail keeps
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on stretching [35]. These observations suggest that while the reconfiguration
at breakup is localized in longitude, the formation of the current sheet during
the growth phase is more homogeneous in longitude. Thus, while the limit
ky → ∞ is adapted to study breakup, the formation of the current sheet can
be better described by a finite ky. Therefore, we consider an external current
localized around the noon-midnight meridian, flowing eastward and slowly
increasing with the time as

δjeq(y, t) = δjm exp(− y2

Δ2 ) exp(γt), (37)

where δjm is the initial magnitude of the current, 1/γ is the characteristic
time scale of the growth phase and Δ is the characteristic scale along y where
the tail current increases. The complete expression for the external current
becomes:

δjext(L, y, θ, t) = δjeq(y, t)δ(L− Lc) sin2n θ
[
(2n+ 1) cot2 θ − 1

]
, (38)

We verify that for θ = π/2 (magnetic equator), the forcing current flows west-
ward as suggested by observations. Then, we can compute the ψ component
of the perturbed magnetic field which gives:

δBψ = −μ0δjm√
π

L2
c

(
sin2n+1 θ cos θ

) 1
Δ

[
1 + ζP

(
W̃ (ζ)

)]
(39)

where W̃ (ζ) = 1/(
√
π)
∫∞

−∞ dV exp(−V 2)/(V −ζ), is the Fried-Conte function
and we have defined V = y′/Δ and ζ = y/Δ. Close to midnight, ζ < 1, and
in this limit, the Fried-Conte function can be approximated by P (W̃ (ζ)) �
−2ζ +O(ζ3) and we obtain:

δBψ = −μ0δjm√
π

L2
c

(
sin2n+1 θ cos θ

) 1
Δ

(
1 − 2

( y
Δ

)2
)
. (40)

One should notice that in the opposite limit ζ > 1 (far away of the maximum
of the current in the y direction), the expansion of the Fried-Conte function
is −1/ζ and δBψ = 0. Finally, close to midnight (ζ < 1), the two perturbed
components of the magnetic field write:

δBψ = − μ0δjm√
π

L2
c

(
sin2n+1 θ cos θ

) 1
Δ

(
1 + 2

( y
Δ

)2
)

(41)

δB‖ = − μ0

2
L2

c

L
sin2n θ

(
(2n+ 1) − (2n+ 2) sin2 θ

)
δjeq(y, t)

× (H(L− Lc) −H(−(L− Lc))) (42)

We verify that for a forcing current directed westward (δjm > 0) at the mag-
netic equator (θ = π/2), the radial component of the equilibrium magnetic
field increases off-equator whereas the parallel component near the equator
decreases, which corresponds to observations carried out during the growth
phase (see Fig. 2).
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Fig. 2. Schematic diagram of the electromagnetic perturbation applied on a 2D
dipole field to model the change of configuration which occurs during the growth
phase. As indicated by the arrows, the magnetic field perturbation tends to produce
a tail-like configuration

5.2 Transport of the Plasma

In the previous Sects. 2, 3, and Sect. 5.1, we have completely solved the
Vlasov-Maxwell system of equations in the quasi-static limit (ω < k‖vA

and ω < ωb). In (5) only the terms ωdλ/ω and iμkyδAψ/q = −δB‖/q
appear. It is useful to compare the size of these two terms. Reminding
that ωdλ/ω � kyvdλneq/ω and μδB‖/q = −μBỸ /q � −Eλneq/ω/D̂/q �
1/(kyL)kyvdλneq/ω, we can conclude that in the limit |ky|L > 1 we have
μδB‖/q < ωdλ/ω. Therefore the term containing δB‖ can be neglected we
take

μδB‖/q � 0. (43)

In this case, the linearized Vlasov equation, which describes the behavior of
the plasma, can be simplified, (1) and (4) remain the same but the expression
(5) of H becomes:

H =
(
J0δΦ+

(ω + ωd)
ω

λ

)
, (44)

where δΦ is given by the QNC (9) that implies δΦ = Φ0 −λ, with Φ0 given by
(13), and λ and δB‖ given by (33) and (42) (from the Ampère’s law solved in
the limit |ky|L > 1 and |ky(L− Lc)| < 1). Now, to obtain the self-consistent
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perpendicular electric field associated with the magnetic field perturbations,
we need to compute the constant part, Φ0, of the perturbed electrostatic
potential. Taking into account that μδB‖/q � ωdλ/ω, the expression, (13),
of Φ0 becomes:

Φ0 =

∫
dl
B

[∫ 4πBdEdμ
m2

i |v‖| f0i ×
[

ω�i−ωdi

ω+ωdi

(
ωdiλ

ω

)]]
∫

dl
B

[∫ 4πBdEdμ
m2

i |v‖| f0i ×
[

ωdi(ω�i−ωdi)
ω(ω+ωdi)

]] . (45)

The expression of Φ0 (see Appendix D) becomes

Φ0 = (cn + Sn)λneq, (46)

where we have defined

Sn =
n+1∑
k=0

(−1)kCk
n+1

(2k − 1)!!
(2k + 2)!!

k∑
j=0

(−1)jCj
k

(2j)!!
2j−1(j + 1)!

×
(

1 + k
(2j + 2)(j + 3/2)
(2j + 3)(j + 2)

)
. (47)

Now, from (14), the self-consistent perpendicular electric field writes:

δEy = −ikyλneq

(
Sn − (

sin2 θ
)n+1

)
. (48)

After an inverse Fourier transform, we obtain:

δEy =
μ0L

2
cL

4(n+ 1)
1
π

(
Sn − (

sin2 θ
)n+1

) ∂

∂t

(
P

(∫ ∞

−∞
dy′ δjeq(y′, t)

(y − y′)2

))
.

(49)

Taking into account the expression of the current (37), we find

δEy = −μ0δjmγL
2
cL

2(n+ 1)
1√
π

(
Sn − (

sin2 θ
)n+1

)
× 1
Δ

(
1 + ζP

(
W̃ (ζ)

))
exp(γt). (50)

Then, in the limit ζ < 1, we obtain

δEy = δEL,y,t(L, y, t)
1

n+ 1

(
Sn − (

sin2 θ
)n+1

)
, (51)

where we have defined :

δEL,y,t(L, y, t) = −μ0δjmγL
2
cL

2
1√
π

1
Δ

(
1 − 2

( y
Δ

)2
)

exp(γt). (52)
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The colatitude θ where the perpendicular electric field changes sign is given
by:

θ0 = arcsin
(
S1/(2n+2)

n

)
. (53)

Because Sn is always smaller than unity, the direction of the perpendicu-
lar electric field changes along the field line even in the absence of a par-
allel electric field (see Fig. 3). As noted in Sect. 3, δEy is directed east-
ward (positive) close to the equator, it is null for θ = θ0, and it is directed
westward (negative) for θ < θ0. The larger n, the larger is θ0 therefore the
region where δEy is eastward gets thinner (as n increases). As an exam-
ple, for n = 0, S0 = 5/6, λ0 =

(
c0 + sin2 θ

)
λ0eq, Φ0 = (c0 + 5/6)λ0eq and

δEy = δEm(L, y, t)
(
5/6 − sin2 θ

)
. δEy is directed eastward (positive) close

to the equator, it is null for θ = arcsin(5/6)1/2 and is directed westward
(negative) for θ < arcsin(5/6)1/2. From (52), we can estimate the intensity

Fig. 3. Variation of λ and δEy versus the colatitude θ for n=0.

of the perpendicular electric field during the growth phase. For instance, the
characteristic variation of the equatorial magnetic field at the geostationary
orbit (Lc � L = 6.6 RE) is of order of 30 nT for a duration of the growth
phase of 30 minutes. We assume that the radial scale of the current sheet is
about 1 RE therefore μ0δjm � 30× 10−9/(6.4× 106)T/m. In the y direction,
we assume that the spatial scale Δ is about 4 RE . We obtain for the induc-
tive component of the perpendicular electric field (without the contribution
of Φ0), δEL,y,t � 2.5 mV/m which is reduced to 0.4 mV/m at the equator due
to the contribution of the electrostatic component Φ0 (Sn in (51)). A smaller
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Δ would result in a larger value of δEL,y,t. As we have previously mentioned,
the effect of the Φ0 is to decrease the magnitude of the total electric field
compared to the inductive component. Therefore, the plasma transport is
also reduced.

Next, we can compute the bounce average electric drift to study the mo-
tion of the particles along ψ as a function of their pitch angle. We obtain (see
Appendix E):

uEy
=

1
τb

∮
dl

|v‖|
δEy

B
=
δEL,y,t(L, y, t)

Beq

1
n+ 1

(
Sn

2

(
1 +

μBeq

E

)
−

n+2∑
k=0

(−1)kCk
n+2

(2k − 1)!!
(2k)!!

n+2∑
j=0

(−1)jCj
k

(
μBeq

E

)j)
. (54)

We note that the bounce average electric drift, associated with δEy, depends
on the magnetic moment. To simplify, we can consider two extreme cases:
equatorial pitch-angle particles of 90◦ (μBeq/E � 1) and equatorial pitch-
angle particles of 0◦ (μBeq/E � 0). We obtain:

uEy �

⎧⎪⎨⎪⎩
δEL,y,t/Beq

(
Sn/2 −∑n+2

k=0(−1)kCk
n+2(2k − 1)!!/(2k)!!

)
for αeq = 0◦,
δEL,y,t/Beq (Sn − 1) for αeq = 90◦,

(55)

where δEL,y,t, given by (52) is always negative close to the midnight meridian
(y < Δ). Since Sn is always smaller than unity the bounce average electric
drift of 90◦ particles and that of 0◦ particles have opposite directions. 90◦

particles drift tailward whereas 0◦ particles drift earthward, during the mag-
netic field line stretching. When n increases, the perturbation is more and
more localized close to the equator and Sn decreases. Therefore, from (55), we
deduce that 90◦ particles drift more and more tailward whereas 0◦ particles
drift slowly eartward. Again for n = 0, we find:

uEy �
{

1/24(δEL,y,t(L, y, t)/Beq) for αeq = 0◦,
−1/6(δEL,y,t(L, y, t)/Beq) = −4uEy(0◦) for αeq = 90◦.

Thus, the correct treatment of the QNC implies a perpendicular motion in re-
sponse to a quasi-static electromagnetic perturbation (ω < k‖vA and ω < ωb).
Yet, because the perpendicular electric field direction varies with the posi-
tion along the field line, the bounce averaged motion is different for different
pitch-angles. Ninety degrees pitch-angle particles, which mirror close to the
equator drift tailward while zero degree particles drift earthward. These re-
sults are different from the results obtained by a steady convection approach
where the convection across a static magnetic field is ensured by an imposed
electrostatic field (e.g. [30]). In the present work, the transport is due to
the self-consistent response of the plasma to the quasi-static perturbation
including the necessity of enforcing the quasi-neutrality.
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5.3 Self-consistent Parallel Electric Field

To determine the field-aligned potential drop which can exist to the first
order in (Te/Ti), we have to solve the QNC to this order. Thus, in this case:
δΦ(l) + λ(l) = Φ0 + δ̃φ(l), where δ̃φ(l) is a first order term proportional to
(Te/Ti). Equation (9) becomes:∫

4πBdEdμ
m2

e|v‖| f0e

(
δ̃φ− δ̃φ

)
=
Te

Ti

∫
4πBdEdμ
m2

i |v‖| f0i

×
[
ωdi (ωdi − ω�i)
ω(ω + ωdi)

Φ0 +
ω�i − ωdi

ω + ωdi

(
Ξi

)]
. (56)

Provided that ω < ωb, (56) is valid for any quasi-static or low frequency
perturbations. Thus a parallel electric field will be present in response to
electromagnetic perturbations applied in a mirror geometry like the near-
Earth magnetic tail. Therefore, parallel electric fields should exist not only
during active periods (breakup) or at low altitudes (inverted V), but also
during relatively quiet periods such as the substorm growth phase, as will
be seen in the next sections. Unfortunately, it is not possible to find a gen-
eral analytical solution of the integral equation (56) except when ions and
electrons are stochastic. In such a case, it can be shown that the RHS of
(56) cancels out exactly due to fast pitch-angle scattering on the two species.
Therefore, there is no parallel electric field for a completely stochastic plasma
(stochastic ions and electrons).

It will be shown in the next subsection that an analytical solution can be
obtained for the region close to the Earth considered in Sects. 5.1 and 5.2.
In this region, electrons and ions are in an adiabatic regime and the β of
the plasma can be assumed to be small therefore the local currents can be
neglected. We show that a self-consistent parallel electric field, developing in
response to the quasi-static change of the magnetic field lines, can be calcu-
lated in the near Earth plasma sheet.

General Case

Equation (56) defines the solution to the order Te/Ti of the QNC, in response
to a perturbation defined by (33), (42) and (46). Taking into account (165)
and (43), M , the RHS term of (56), becomes:

M =
Te

Ti

∫
4πBdEdμ
m2

i |v‖| f0i

[
ωdi (ωdi − ω�i)
ω (ω + ωdi)

]
×
[
Sn−2

n+1∑
k=0

(−1)kCk
n+1

(2k − 1)!!
(2k + 2)!!)

(
1 − μBeq

E

)k (
1 + k

μBeq

E

)]
λneq.

(57)
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Remembering that for a 2D dipole, the bounce averaged curvature-gradient
magnetic drift frequency does not depend upon the magnetic moment μ, the
first term between brackets of the expression of M in (57) is also independent
of μ. Therefore, the μ integration in (57) can easily be performed thanks to
the relation (B.2). We obtain:

M = n0iKi (Sn − 2Rn)λneq, (58)

where Ki is defined by:

Ki =
Te

Ti

1
n0i

∫
4π

√
2miEdE

m2
i

f0i

[
ωdi (ωdi − ω�i)
ω (ω + ωdi)

]
, (59)

and Rn by:

Rn =
n+1∑
k=0

(−1)kCk
n+1

(2k − 1)!!
(2k + 2)!!

k∑
j=0

(−1)jCj
k

(2j)!!
(2j + 1)!!

(
Beq

B

)j

×
(

1 + k

(
Beq

B

)
2j + 2
2j + 3

)
. (60)

In Sect. 5.2, we have seen that the transport depends very little on n. The
only change introduced by modifing n is the degree of localization, close
to the equator. For a larger n, the perturbation is localized closer to the
magnetic equator and therefore the properties of the transport also change
more rapidly along the field line. For simplicity, in the following calculations,
we fix the value of n to zero. We consider a Fourier decomposition of δ̃φ with
respect to the colatitude θ:

δ̃φ =
∞∑

p=1

(ap cos pθ + bp sin pθ) . (61)

The term p = 0 is not included because the structure of the LHS of (56),
(X −X), leads to the cancellation of any constant term. Thus, the first non-
zero term begins for p = 1. The RHS term, M , can be written as a function
of cos pθ; for n = 0, it is simply given by:

M = n0iKi

[
1
30

+
1
15

cos 2θ − 1
60

cos 4θ
]
λ0eq. (62)

We notice that (i) the RHS of (62) contains only even powers of cos pθ, and
(ii) the highest value of p in (62) is 4; higher harmonics vanish. We therefore
assume that δ̃φ only contains terms in cos 2θ and cos 4θ; an assumption that
will be verified later, therefore the solution obtained from this expansion
will be shown to be exact. With this expansion, the field-aligned perturbed
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potential δ̃φ writes:

δ̃φ =
2∑

l=1

a2l cos 2lθ. (63)

The bounce average value of δ̃φ is:

δ̃φ = −μBeq

E

(
a2 + 2a4

(
1 − 3

2
μBeq

E

))
(64)

The remaining double integral, in the LHS of (56), can be calculated from
(C.2) and by taking into account the following identity:∫ ∞

0
Ek−1/2e−E/T dE =

√
π

2k
(2k − 1)!!T k+1/2, (k ≥ 1). (65)

Combining (63), (64) and (65), one gets:∫
4πBdEdμ
m2

e|v‖| f0eδ̃φ = −2
3
n0e

Beq

B

[
a2 + 2a4 − 12

5
a4
Beq

B

]
. (66)

With the help of the simple relation Beq/B = sin2 θ = (1 − cos 2θ)/2, the
expression (66) becomes:

∫
4πBdEdμ
m2

e|v‖| f0eδ̃φ = −n0e

[
1
3
a2 +

1
15
a4

+ cos 2θ
(

−1
3
a2 +

2
15
a4

)
+ cos 4θ

(
−1

5
a4

)]
. (67)

We notice that the first two even terms in cos pθ, considered in the Fourier
series, do not provide terms in sin pθ, nor terms in cos pθ with p odd, nor
terms in cos pθ with p ≥ 4. Thus, the higher order terms (p > 4), which have
not been considered in the above expansion, are solution of the following
system of equations:∑

p

ξpXp = 0, (68)

where Xp = bp, a2l+1, a2l. A trivial solution is:

bp = 0 (∀p), a2l+1 = 0 (∀l), and a2l = 0 (for l > 2). (69)

It was therefore justified to neglect terms with p > 4 as well as terms in sin pθ
and cos pθ (p being odd). Therefore, (62) and (67) allow us to write (56), as
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a function of cos 2θ and cos 4θ, in the following form:

n0e

[
a2 cos 2θ + a4 cos 4θ +

{
1
3
a2 +

1
15
a4

+ cos 2θ
(

−1
3
a2 +

2
15
a4

)
+ cos 4θ

(
−1

5
a4

)}]
= n0iKi

×
[

1
30

+ cos 2θ
1
15

+ cos 4θ
(

− 1
60

)]
. (70)

Taking n0e = n0i at the equilibrium, (70), which should be satisfied for any
value of θ, is equivalent to a system of three equations:

1
3
a2 +

1
15
a4 =

1
30
Ki, (71)

2
3
a2 +

2
15
a4 =

1
15
Ki, (72)

4
5
a4 = − 1

60
Ki.. (73)

Finally, from (72) and (73), we find immediately: a4 = −Ki/48 and a2 =
5Ki/48. Equation (71) is then identically verified. The perturbed electrostatic
potential, obtained from the QNC to the first order in (Te/Ti), is therefore:

δ̃φ = Kie(θ), (74)

where we have defined the function e(θ) = A2 cos 2θ + A4 cos 4θ, with A2 =
5/48 and A4 = −1/60. The parallel electric field is given by:

δE‖ = − ∂

∂l
(δΦ) − ∂

∂t
(δA‖) (75)

= − ∂

∂l
(Φ0 − λ+ δ̃φ) − ∂λ

∂l
. (76)

Remembering that δΦ+ λ = Φ0 + δ̃φ where Φ0 is independent of l and that
dl = −Ldθ, we obtain:

δE‖ =
1
L

∂

∂θ
(δ̃φ) =

1
L
Kie

′(θ), (77)

where e′(θ) is the derivative of e(θ) with respect to θ. We have also performed
the calculation for n = 2 and, in Figure 4, we plot the functions e(θ) and
e′(θ) for these two values of n. As already mentioned, the results depend little
upon n. Indeed, we note that whatever the value of n, e′(θ) goes to zero at the
equator and has two symmetrical extrema off-equator. The parallel electric
field, however, is more localized as n increases. In the following discussion,
we will assume that we are located in the Northern hemisphere (0 ≤ θ ≤
π/2 ⇐⇒ e′(θ) < 0). To go further and perform the energy integration, we
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Fig. 4. Functions e(θ) plotted with solid line (resp. dashed line) for n = 0 (resp.
n=2) and e′(θ) plotted with dotted line (resp. dotted-dashed line) for n=0 (resp.
n=2).

need to simplify the term between brackets intervening in the expression
(59) of Ki. We consider successively two extreme cases for which we are
able to compute completely the parallel electric field. First, in Sect. 5.3, we
assume that the curvature-gradient magnetic drift frequency is smaller than
the frequency of the perturbation. Since ωd = kyvd, where vd is proportional
to the particle energy, this assumption is equivalent to consider that the
particle energy is small or that the scale length of the perturbation in the
y-direction (2π/ky) is large. Second, in Sect. 5.3 we assume that ωd is larger
than ω which corresponds to high energy particles or to perturbations highly
localized in longitude.

Low Magnetic Drift Limit (ωd < ω)

We assume that the particles, that ensure the quasi-neutrality, are low energy
particles satisfying ω > ωd. This assumption means that the characteristic
time for particles to escape from the perturbed region under the effect of
their magnetic drift velocity vd, is long compared to the duration of the
perturbation. For instance, at the geostationary orbit, thermal ions with 10
keV in the plasma sheet have a magnetic drift velocity of the order of 5 km/s.
If the perturbed region has a width of 4 RE in the y-direction, thermal ions
need 90 min to cross the stretched region. This time exceeds the duration of
the growth phase. Therefore, in this limit, the term between brackets of Ki
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in (59) can be written:

ωdi (ωdi − ω�i)
ω (ω + ωdi)

� ω2
di

ω2

(
1 − ω�i

ωdi

)
. (78)

From (65), the energy integration in (59) is performed and we obtain:

Ki =
15
4
Te

Ti
v2

dthi

(
1 − 2

5
uyi

vdthi

)(
k2

yλ0eq

ω2

)
. (79)

In order to know whether the particles are accelerated towards the magnetic
equator or towards the ionosphere, we compute an inverse Fourier transform
in space and time for the parallel electric field (77). From the expressions
(79) of Ki, (33) and (37), we obtain (see Appendix B):

δE‖(L, y, θ, t) = −e′(θ)
[
15
4
Te

Ti
v2

dthi

(
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)]
μ0δjm√
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c
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exp(γt)
γ

×
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P
(
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)
+ ζ2P

(
˜W (ζ)

))
, (80)

Close to midnight, ζ = y/Δ < 1, in this limit, the Fried-Conte function can
be approximated by P (W̃ (ζ)) � −2ζ +O(ζ3) and we obtain:

δE‖(L, y, θ, t) = −e′(θ)
[
15
2
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Ti
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dthi
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)
. (81)

In the inverse limit ζ > 1 (far away from the midnight meridian), the expan-
sion of the Fried-Conte function is −1/ζ and the parallel electric field goes
to zero:

δE‖(L, y, θ, t) = −e′(θ)
[
15
4
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Ti
v2

dthi
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vdthi

)]
× μ0δjm√
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1
2ζ

)
. (82)

From (81), we note that the parallel electric field changes sign between the
dawn side and the dusk side and is maximum for y = ±Δ/√3, inside the
stretched magnetic field line region |y| < Δ/

√
2. In the following discussion,

we will assume that we are located close to midnight (ζ < 1). We distinguish
between two cases:

Case A: |uy| < 5
2 |vd|

δE‖ � −15
2
e′(θ)

[
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Ti
v2

dthi

]
μ0δjm√
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c
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γ

×
( y
Δ

)(
1 −

( y
Δ

)2
)
.

(83)
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The parallel electric field is negative (resp. positive), directed towards the
equator (resp. towards the ionosphere) in the duskside (resp. in the dawn
side). As a consequence, electrons will be accelerated towards the ionosphere
in the dusk side and towards the equator at the dawn side.

Case B: |uy| > 5
2 |vd|

δE‖ � 3e′(θ)
[
Te

Ti
vdthiuy

]
μ0δjm√

π

L2
c

Δ2

exp(γt)
γ

×
( y
Δ

)(
1 −

( y
Δ

)2
)
. (84)

In this case, the parallel electric field direction depends on the direction of the
pressure gradient. In the magnetic tail where the pressure gradient is directed
earthward, electrons are accelerated towards the equator in the dusk side and
towards the ionosphere in the dawn side. Compared to case A, the situation
is reversed.

On the other hand, in regions closer to the Earth, where the pressure
gradient may be directed towards the tail, each of the above direction is
reversed. Case B is presented in Figure 5 where we have taken into account
the change of direction of the pressure gradient when we move closer to the
Earth. The direction of the expected electron precipitations is summarized
in Table (1).

y

z

x
p’<0

p’>0
Epara Epara

e-

e-

Epara

e-

Epara

e-

Fig. 5. Variation of the direction of the parallel electric field and of the electron
precipitations as a function of y and of the pressure gradient (case B). The config-
uration is symmetrical about the magnetic equator.
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ωd < ω et y < 0
p′ > 0 p′ < 0

ωd > ω� =⇒ Io =⇒ Io
ωd < ω� =⇒ Io =⇒ Eq

Table 1. Table of electron precipitations in the dusk side (y < 0) in the limit
ωd < ω. (=⇒ Eq (resp. Io) means that electrons are accelerated equatorward (resp.
towards the ionosphere)).

Large Magnetic Drift Limit (ωd > ω)

Now, we consider the opposite assumption ωd > ω, which corresponds to a
very low frequency perturbation or to a very large ky (an highly localized
perturbation in longitude). In this limit, the term between brackets of Ki in
(59) can be approximated by:

ωdi (ωdi − ω�i)
ω (ω + ωdi)

� ωdi

ω

(
1 − ω�i

ωdi

)
. (85)

Therefore, after an integration on the energy E, the expression (59) of Ki, in
the limit ωd > ω, writes:

Ki =
3
2
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Ti
vdthi

(
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3
uyi

vdthi

)(
kyλ0eq

ω

)
, (86)

which gives for the parallel electric field, after an inverse Fourier transform
in space and time (see Appendix B for the method):

δE‖(L, y, θ, t) =
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Close to midnight, ζ = y/Δ < 1, we obtain:

δE‖(L, y, θ, t) =
3
2
e′(θ)
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)
. (88)

In the opposite limit ζ > 1 (far away from the midnight meridian), the
expansion of the Fried-Conte function is −1/ζ and the parallel electric field
goes to zero:

δE‖(L, y, θ, t) � 0. (89)
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Equation (88) shows that the parallel electric field does not change sign in
the region where the magnetic field lines are stretched (|y| < Δ/

√
2). In the

following discussion, we will consider a location close to midnight (ζ < 1).
We distinguish again between two cases:

Case C: |uy| < 3
2 |vd|

δE‖ � 3
2
e′(θ)

Te

Ti
vdthi

μ0δjm√
π

L2
c

Δ
exp(γt) ×

(
1 − 2

( y
Δ

)2
)
. (90)

The parallel electric field is positive around midnight, directed towards the
ionosphere. Thus, electrons are accelerated towards the equator in the re-
gion where the magnetic field lines are more stretched. They are accelerated
towards the ionosphere in the morning and evening sectors for |y| > Δ/

√
2.

Case D: |uy| > 3
2 |vd|

δE‖ � −e′(θ)
Te

Ti
uyi

μ0δjm√
π
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c

Δ
exp(γt) ×

(
1 − 2

( y
Δ

)2
)
. (91)

In this last case, we find again a pressure gradient dependence of the parallel
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e-

Fig. 6. Variations of the direction of the parallel electric field and of the electron
precipitations in the dusk side as a function of the pressure gradient (case D).
The dawn side configuration is obtained by symmetry around the noon/midnight
meridian.

electric field. In the plasma sheet, where the pressure gradient is directed
earthward (p′ is negative), the parallel electric field is directed towards the



Self-Consistent Kinetic Approach 195

equator and the electrons are accelerated towards the ionosphere around mid-
night. In the flanks, the situation is reversed. Closer to the Earth, the pressure
may be directed tailward, then all the results are reversed; electrons move
towards the ionosphere at midnight and towards the equator in the flanks
(Figure 6). The directions of the expected electron motion are summarized
in the Table (2).

ωd > ω et |y| < Δ/
√

2
p′ > 0 p′ < 0

ωd > ω� =⇒ Eq =⇒ Eq
ωd < ω� =⇒ Eq =⇒ Io

Table 2. Table of electron precipitations in the region around the noon/midnight
meridian (|y| < Δ/

√
2) in the limit ωd > ω. (=⇒ Eq (resp. Io) means that electrons

are accelerated equatorward (resp. toward the ionosphere)).

Discussion

The duration of the growth phase Tg is of order 30 minutes and the ion
thermal energy is around 10 keV in the near Earth plasma sheet. More-
over, dual satellite studies suggest that the scale length of the perturba-
tion associated with the formation of the current sheet during the growth
phase can not be smaller than one Earth radius. Therefore, the assumption
ωd � vd/Δ < ω � 2π/Tg seems reasonnable. Furthermore, from the az-
imuthal assymetry of the ion flux (between duskward/dawnward directions)
measured aboard a geostationary spacecraft (e.g. [36]), we know that the
scale length, LP , of the ion pressure gradient is relatively small (LP � 0.5−1
RE). Therefore, we have uy/vd � L/Lp � 6 − 10 and we can consider that
|uy| > |vd| close to the geosynchronous region. Thus, it seems that the most
appropriate case for the substorm growth phase is case B, since in this case
the particles that ensure the QNC verify ωd < ω and |uy| > |vd|. Therefore,
we expect the parallel electric field to be directed towards the ionosphere in
the duskside whereas it should be directed towards the magnetic equator in
the dawn side. As a consequence, cold ionospheric electrons may be acceler-
ated towards the equator at dusk, whereas hot plasma sheet electrons will
move towards the ionosphere at dawn. This result is linked to the assumption
that the perturbation associated with the magnetic field lines stretching is
localized along the y-direction. The magnitude of the parallel electric field
during the growth phase can be estimated. In (84), we assume (i) the time
scale for the growth phase of about 30 minutes, (ii) the characteristic increase
of the radial component of the magnetic field of 30 nT, (iii) the radial extent
of the current sheet of 1 RE , and (iv) the forcing current Lc is at 7 RE .
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Remind that the diamagnetic drift velocity is uy = p′/(qn0) � T/(qLPBeq)
and that the bounce averaged curvature-gradient magnetic drift velocity is
vdth = −2T/(qLBeq). We use the following parameters: 1 keV for the elec-
tron temperature and 10 keV for the ion temperature. The scale, Δ, of the
perturbed region is taken to be 4 RE , LP , the scale length of the ion pressure
gradient is 2 RE , (much larger than values estimated in [36]), then the par-
allel electric field at the geostationnary orbit L � 6.6 RE , given by (84), is
E‖ � 1.6 × 10−5V.m−1 with e′(θ) � 0.1. A smaller scale for the ion pressure
gradient or/and a smaller Δ would result in a larger parallel electric field. For
a distance between the ionosphere and the magnetic equator equal to πL/2,
we obtain a field-aligned potential drop of a few hundred volts, which is far
from negligible. We suggest that this parallel electric field produces a parallel
drift velocity between electrons and ions. It has been shown elsewhere that
the drifting electrons may generate electromagnetic waves, observed at sub-
storm breakup [37] with frequencies of the order of the proton gyrofrequency
(FH+ � 1 Hz). More recently it has been shown in [38] that these waves
are produced via a current driven instability when the parallel drift velocity
between electrons and ions is large enough (a fraction of the ion thermal
velocity). Since these waves are able to diffuse the electrons in a time corre-
sponding to their bounce period (10 s), the parallel current will be disrupted
which allows the magnetic reconfiguration observed in the near-Earth mag-
netotail (7-12 RE) to occur.

Present results seem to contradict those of Koskinen (compare Fig. 3 of
[39] with our Fig. 3). But as Koskinen pointed out: “the parallel field of
Fig. 3 is not the real electric field in the plasma. Due to their high paral-
lel mobility charged particles quickly compensate the parallel component of
the slowly evolving inductive field”. In fact, during the growth phase, we
have the following ordering ωbe > ωbi > ω. Thus, the field-aligned potential
drop results from the differences between the bounce average responses of
electrons and that of ions, owing to their different temperature. In the limit
Te/Ti < 1, this difference is small and therefore the field-aligned potential is
small too. This is why the lowest order of the QNC gives δΦ+λ = constant,
which means that to the lowest order in (Te/Ti), the inductive component
of the parallel electric field ∂A‖/∂t = ∂λ/∂l is balanced by the electrostatic
component ∂δΦ/∂l. Thus, the parallel electric field found by [39], from a
non self-consistent approach, does not develop because the particle response
tends to cancel it. Notice that the high parallel mobility, corresponding to
large ion and electron temperatures, does not cancel the parallel electric field
in a mirror geometry for low frequency perturbations. In the present paper,
we have shown, for the simple case where Te < Ti, that a parallel electric field
proportional to Te/Ti does develop. The present study shows the importance
of ensuring QNC while imposing magnetic field variations. Finally, we point
out we have solved the full Vlasov-Maxwell system of equations only in the
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quasi-static limit, notably the solution of Ampère’s law is valid only in this
limit. However, the results obtained from the lowest order in Te/Ti of the
QNC and to the first order are basically valid for low frequency perturba-
tions ω < ωb.

Although the above results allow a self-consistent description of the origin
of parallel electric fields, there are some limitations that should be stressed.
The present calculation has been carried out with the low β assumption since
the 2D dipole has been used to solve the Ampère’s law with a forcing current
and to obtain the explicit expression for the parallel electric field. This limit
is not a priori valid for the Earth’s plasma sheet, especially for large radial
distances. However, even with this restrictive assumption we have taken into
account the pressure gradient effect to the lowest order. For higher values of
β, we expect the general trend to be the same but another equilibrium should
be used which would preclude any analytical approach.

Another limitation is the fact that we do not take into account the iono-
sphere/magnetosphere coupling. The QNC for the magnetotail plasma is
likely to be modified by the presence of the ionospheric plasma. Keeping
in mind the above limitations, the present model provides a self-consistent
kinetic description of the generation of parallel electric fields in a mirror
geometry for quasi-static perturbations (ω < k‖vA and ω < ωb).

6 Conclusion

A detailed discussion has been given about the applicability of MHD to the
description of active events occuring in the Earth’s plasma sheet, before and
at substorms, as well as in the solar corona, where Loops, Current Sheets, and
Streamers develop. As long as collisions occur over times which are shorter
than for other dynamical processes, MHD always applies. In a collisionless
regime, however, we have shown that the applicability of ideal MHD is not
granted and in particular is restricted to frequencies above the electron (and
ion) bounce frequency. Thus against the conventional wisdom, in a mirror
geometry, for a collisionless plasma, MHD is not a priori applicable to low
frequency processes. We have presented a self-consistent kinetic approach of
low frequency, quasi-static perturbations developing in a collisionless plasma
confined by magnetic mirrors. Using the linear cyclotron and bounce averaged
Vlasov equation obtained in [15], the QNC has been developed. To the lowest
order in Te/Ti (Te/Ti < 1), the following results were described:

• The QNC imposes the existence of a component Φ0, given by (13), of the
perturbed electrostatic potential. This component Φ0 is constant along
the field line and varies in the azimuthal direction, thereby contributing
to the azimuthal electric field.
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• The presence of this electrostatic component does modify the plasma
compression term in the MHD energy principle developed by Bernstein et
al. [27]. Taking into account the existence of Φ0, implied by the QNC, we
have derived a kinetic variational form for the stochastic as well as for the
adiabatic case. In the case of stochastic ion motion, we have shown that
an MHD-like energy principle is recovered, thanks to the randomization
of the pitch angles while ions cross the minimum B region (the equator)
and we computed explicitly the plasma compression term.

• The potential electric field derived from QNC, has also direct conse-
quences on the transport: it tends to reduce (partially shield) the effect of
the inductive component of the electric field. In particular, this effect ex-
plains why no large bulk flows are found to be associated with large scale
electromagnetic perturbations (τ > τb), such as substorm growth phase
or long period oscillations (Pc5). Unlike what is done for the particle
test and MHD approaches, the electrostatic component of the azimuthal
electric field is not assumed; it is determined, in a self-consistent manner,
by the response of the plasma to an externally applied perturbation. The
existence of this electrostatic component Φ0 is a purely kinetic effect. The
total azimuthal electric field (14), which is the sum of these two compo-
nents, varies in amplitude and direction, as a function of the position
along the field line, which implies that the bounce-averaged transport of
the particles (54) strongly depends on the pitch angle.

• The parallel electric field is null to the order Te/Ti < 1 (see (11)), there-
fore the residual parallel electric field has been calculated from QNC
developed to the order in Te/Ti.

To the next order in Te/Ti, an analytical calculation of the residual field-
aligned potential drop has been presented. As long as we can assume that:
ωd < ω and |vd| < |uy|, a field-aligned potential drop of a few hundred volts
is found to develop as a consequence of the stretching of the magnetic field
lines, during the substorm growth phase. The associated parallel electric field
is directed towards the ionosphere in the dusk sector and towards the equator
in the dawn sector. This parallel electric field is able to produce a parallel drift
velocity between electrons and ions. In turn the drifting electrons generate
electromagnetic waves, observed at magnetospheric substorm breakup [37]
at frequencies of the order of the proton gyrofrequency (FH+ � 1 Hz), via a
current driven instability. We suggest that, thanks to their large amplitudes,
these waves can:

• diffuse the electrons along the field line interrupting the bounce motion
• produce pitch angle and spatial diffusion of ions, thereby reducing/sup-

pressing the pressure anisotropy and the pressure gradient responsible for
the perpendicular current.

The diffusion of electrons being faster (10 s) than the diffusion of ions (100 s),
the fast bounce motion of electrons is interrupted first. On the time scale of
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the electronic bounce period, the parallel current is disrupted and the system
equilibrium is broken. Another consequence of the electron diffusion is that
the electrostatic component Φ0 is cancelled. The total perpendicular electric
field is therefore no longer reduced and is equal to the large induced electric
field component associated with the magnetic reconfiguration; the plasma
moves due to the associated electric drift and the observed high convective
flows can occur. Hence it seems that, in a collisionless plasma, a microscopic
process (a current driven instability) controls the interruption of the current
that was holding the current sheet. Notice that in this model there is no
need for the formation of a neutral line; neutral line or points can develop
as a consequence of the change of the system of electrical currents. Thus no
particular role is played by a singular region (B� 0), and there is no need
for assuming an anomalous diffusion to initiate magnetic reconfiguration.
The transformation of the magnetic energy stored into the CS into kinetic
energy can occur everywhere in the CS, there is no need for a singular X-line
topology.

A Solution of the Linearized Ampère’s law

Using the local field-aligned coordinates and with the gauge δAy = 0, the
curl of B gives

∇ × δB =
{
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where J is the jacobian of the change of coordinates between the cartesian
and the local frame (see also the appendix A of [20]). We assume that

δA(r, t) = δ̂A(ψ, ky, l, ω) exp (i(kyy + ωt)) ,

for the sake of simplicity we omit thêsymbol and the exponential factor in the
following formulas. Defining two variables X = kyλ/ω and Ỹ = ikyδAψ/B
as [27], interchanging the partial derivatives, ∂ψ(JB∂l) = JB∂l∂ψ, (see [20]
for details about the interchange of the partial derivatives) when necessary,



200 René Pellat et al.

the Ampère’s law writes:

−ikyỸ B − 1
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One can show that (97) can be obtained from (95) and (96), therefore the
system is reduced to these two latter equations. Inserting (95) to (96), we
obtain
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∂Ỹ

∂l
−B

∂2X

∂l∂ψ

))
= μ0δjyext. (98)

Again, we interchange the partial derivatives (∂ψ(JB∂l) = JB∂l∂ψ), divide
by B and integrate along the field line which yields(
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Therefore we have to solve the following system of equations:
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To go further, we assume a priori that ∂Ỹ /∂l < ∂2X/∂l∂ψ (and will check
it afterwards) which corresponds to assume that the variation of δB‖ along
the field line is smaller than the variation of δBψ in the radial direction.
This assumption is well adapted to the choice of an external current highly
localized in the radial direction. The system becomes:
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Defining a new variable, U = ∂X/∂l, (103) becomes:
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Assuming that the perturbation varies faster in the ψ direction than the
equilibrium, the second term of (104) can be neglected. Moreover, in the
limit |ky|L > 1 the term between parenthesis is equivalent to unity. Therefore,
(104) can be rewritten in a classical form of a linear second order differential
equation:

∂2U

∂ψ2 − k2
y

B2U = S(ψ, ky, l, ω), (105)

where S(ψ, ky, l, ω) = −(μ0k
2
y/B)

∫
(dl/Bδjext(ψ, ky, l, ω)) is the forcing term.

To solve (105), we have to build a Green function from the solutions of the ho-
mogeneous equation; U1 = exp

(|ky| ∫ dψ/B) and U2 = exp
(−|ky| ∫ dψ/B)

(see e.g. [40]). Taking into account the properties of the 2D dipole model it
is more convenient to use the variables L and θ defined by (26). While L and
θ are not strictly speaking independent variables, we can consider them as
such in the limit where we neglect the variations of the equilibrium compared
to those of the perturbation, these variables allow us to easily solve (105),
which becomes:
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lutions of the homogeneous equation become U1 = exp |ky|L sin2 θ and U2 =
exp−|ky|L sin2 θ. The Green function is defined by:
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where W (L0) = −2|ky| sin2 θ, is the Wronskian of U1 and U2. The Green
function becomes:
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. (107)

The complete solution of (106) writes (omitting to specify all the depen-
dences)

U(L) =
∫ ∞

0
dL0G(L,L0)S(L0), (108)
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which yields (specifying all the spatio-temporal dependences)

U(L, θ, ky, ω) = −μ0|ky|
2
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×
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Taking into account the expression (30) of the external current, the complete
solution for this class of current is

Un(L, ky, θ, ω) = −μ0|ky|δjeq(ky, ω)
2
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where we have used the following integral:∫
dθ sin2n+2 θ

(
(2n+ 1) cot2 θ − 1

)
= sin2n+1 θ cos θ + C(ky, ψ)

We impose U = ∂X/∂l = δBψ = 0 at the equator (θ = π/2) which implies
C = 0. From (110), we obtain
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4
L2

cL

∫
duun exp(Zu), (111)

where we have defined u = sin2 θ and Z = −|ky(L − Lc)|. The solution
becomes:

Xn(L, ky, θ, ω) =
μ0|ky|δjeq(ky, ω)

4
L2

cL

(
un

Z

+
n∑

k=1

(−1)kn(n− 1)...(n− k + 1)
un−k

Zk+1

)
exp(Zu), (112)

where we have used the integral
∫
duun exp(Zu) = [un/Z+

∑n
k=1(−1)kn(n−

1) . . . (n−k+1)un−k/Zk+1] exp(Zu). Now, we can solve the second equation
(102) of the system to obtain Ỹ . With the variables L and θ, and in the limit
|ky|L > 1, (102) becomes:

Ỹ =
1

k2
yBL

∂

∂θ

(
B
L2

D̂

∂U

∂L

)
(113)

After some algebra, we obtain

Ỹ =
μ0δjeq(ky, ω)

2
L2

c

L

D̂
un+1

(
(2n+ 1) − (2n+ 2)u+ 2Zu (1 − u)

)
× [H(L− Lc) −H (−(L− Lc))] exp (Zu) , (114)
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where H stands for the Heaviside function. As claimed above, we verify a
posteriori that the assumption ∂Ỹ /∂l < ∂2X/∂l∂ψ is valid. Indeed, we have

∂Ỹ /∂l

∂2X/∂l∂ψ
� ∂Ỹ /∂l

∂U/∂ψ
� 1
k2

yL
2 . (115)

Thus, the above assumption is valid in the limit |ky|L > 1. Then, we take
the limit |Z| = |ky(L − Lc)| < 1, which implies that the wave length of the
perturbation is larger than the distance between the current and the location
where the solution is calculated. In this limit, one can show that X writes:

Xn(L, ky, θ, ω) � μ0|ky|δjeq(ky, ω)
4

L2
cL

(
n!

Zn+1 +
un+1

n+ 1
+O(Z)

)
.

(116)

Finally, we obtain for λ:

λn(L, ky, θ, ω) � λneq

(
cn(L, ky) + (sin2 θ)n+1 +O(−|ky(L− Lc)|)

)
,
(117)

where we have defined cn(L, ky) = (n + 1)!/(−|ky(L − Lc)|)n+1 and λneq =
1/(4(n+ 1))μ0(|ky|/ky)ωδjeq(ky, ω)L2

cL. The second variable, Ỹ , becomes

Ỹ = 2(n+ 1)λneq
ky

|ky|ωD̂ sin2n+2 θ
(
(2n+ 1) − (2n+ 2) sin2 θ

)
× [H(L− Lc) −H (−(L− Lc))] . (118)

Therefore, in the limit |ky|L > 1 and |ky(L − Lc)| < 1, the perturbed com-
ponents of the magnetic field write:

δBψ = Un(L, θ) = −μ0|ky|δjeq(ky, ω)
2

L2
c

(
sin2n+1 θ cos θ

)
(119)

δB‖ = −BỸ = −μ0δjeq(ky, ω)
2

L2
c

L
sin2n θ

(
(2n+ 1) − (2n+ 2) sin2 θ

)
× [H(L− Lc) −H (−(L− Lc))] (120)

B Inversion of the Fourier Transform

In this appendix, we do not omit the Fourier notations therefore, we have

Û =
∂X̂

∂l
= δ̂Bψ, (121)
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and the real component δBψ writes

δBψ(L, y, θ, t) =
1
2π

∫ +∞

−∞
dω

∫ +∞

−∞
dky δ̂Bψ(L, ky, θ, ω)

× exp (i (kyy + ωt)) , (122)

δBψ(L, y, θ, t) = −μ0

2
f(θ)

1
2π

∫ +∞

−∞
dω

∫ +∞

−∞
dky|ky|δ̂jeq(ky, ω)

× exp (i (kyy + ωt)) , (123)

where f(θ) = L2
c sin2n+1 θ cos θ. The ω integration is straightforward and

gives

δBψ(L, y, θ, t) = − μ0

2
√

2π
f(θ)

∫ +∞

−∞
dky|ky|δ̂jeq(ky, t) exp (ikyy) . (124)

For the ky integration, we note that :

|ky| =kysign(ky) (125)

=
iky

π
FT

(
P

(
1
y

))
(126)

=
1
π
FT

{
∂

∂y

[
P

(
1
y

)]}
. (127)

where FT denotes a one dimension Fourier transform and P the Cauchy
principal value. The perturbed magnetic field component becomes

δBψ = −μ0

2
f(θ)

∫ +∞

−∞
dky

(
1
π
FT

{
∂

∂y

[
P

(
1
y

)]})
× FT (δjeq(y, t)) exp (ikyy) . (128)

Moreover, the convolution theorem gives :

f̂ ∗ g = f̂ · ĝ ⇐⇒ f ∗ g = FT−1
(
f̂ · ĝ

)
. (129)

Therefore, we obtain

δBψ = −μ0

2π
f(θ)

∫ +∞

−∞
dy′δjeq(y′, t)P

(
− 1

(y − y′)2

)
. (130)

Finally, we can write

δBψ =
μ0

2π
f(θ)P

(∫ +∞

−∞
dy′ δjeq(y′, t)

(y − y′)2

)
. (131)
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Another example, for the parallel electric field, we have

Ê‖(L, ky, θ, ω) =
1
L
e′(θ)

[
15
4
Te

Ti
v2

dthi

(
1 − 2

5
uyi

vdthi

)]
k2

y

ω2 λ̂neq(ky, ω),

(132)

and the real component δE‖ writes

δE‖(L, y, θ, t) =
1
2π

∫ +∞

−∞
dω

∫ +∞

−∞
dkyδÊ‖(L, ky, θ, ω) exp (i (kyy + ωt))

(133)

=
1
L
e′(θ)

[
15
4
Te

Ti
v2

dthi

(
1 − 2

5
uyi

vdthi

)]
(134)

× 1
2π

∫ +∞

−∞
dω

∫ +∞

−∞
dky

k2
y

ω2 λ̂neq(ky, ω) exp (i (kyy + ωt)) .

(135)

Using the expression of λneq = 1/(4(n + 1))μ0(|ky|/ky)ωδjeq(ky, ω)L2
cL for

n = 0, we write

δE‖(L, y, θ, t) = e′(θ)
[
15
4
Te

Ti
v2

dthi

(
1 − 2

5
uyi

vdthi

)]
L2

cμ0

4

× 1
2π

∫ +∞

−∞
dω

∫ +∞

−∞
dky

ky

ω
|ky|δ̂jeq(ky, ω) exp (i (kyy + ωt)) . (136)

The ω integration is straightforward and gives

δE‖(L, y, θ, t) = e′(θ)
[
15
4
Te

Ti
v2

dthi

(
1 − 2

5
uyi

vdthi

)]
L2

cμ0

4

× 1√
2π

∫ +∞

−∞
dkyiky|ky|

∫
dtδ̂jeq(ky, t) exp (ikyy) . (137)

For the ky integration, we note that :

iky|ky| =k2
yisign(ky), (138)

= − k2
y

π
FT

(
P

(
1
y

))
, (139)

=
1
π
FT

{
∂2

∂y2

[
P

(
1
y

)]}
. (140)
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The perturbed magnetic field component becomes

δE‖(L, y, θ, t) = e′(θ)
[
15
4
Te

Ti
v2

dthi

(
1 − 2

5
uyi

vdthi

)]
L2

cμ0

4

×
∫ +∞

−∞
dky

(
1
π
FT

{
∂2

∂y2

[
P

(
1
y

)]})
·FT

(∫
dtδjeq(y, t)

)
exp (ikyy) .

(141)

Moreover, the convolution theorem gives :

f̂ ∗ g = f̂ · ĝ ⇐⇒ f ∗ g = FT−1
(
f̂ · ĝ

)
(142)

Therefore, we obtain

δE‖(L, y, θ, t) = e′(θ)
[
15
4
Te

Ti
v2

dthi

(
1 − 2

5
uyi

vdthi

)]
L2

cμ0

4π

×
∫ +∞

−∞
dy′

(∫
dtδjeq(y′, t)

)
P

(
2

(y − y′)3

)
. (143)

Finally, we can write

δE‖(L, y, θ, t) = e′(θ)
[
15
4
Te

Ti
v2

dthi

(
1 − 2

5
uyi

vdthi

)]
L2

cμ0

2π

× P

(∫ +∞

−∞
dy′

∫
dtδjeq(y′, t)

(y − y′)3

)
. (144)

Using the expression of δjeq(y, t):

δjeq(y, t) = δjm exp
(−y2/Δ2) exp γt, (145)

with the same previous variables Y = y′/Δ and ζ = y/Δ, the parallel electric
field becomes:

δE‖(L, y, θ, t) = e′(θ)
[
15
4
Te

Ti
v2

dthi

(
1 − 2

5
uyi

vdthi

)]
L2

cμ0δjm
2πγΔ2 exp(γt)

× P

(∫ +∞

−∞
dY

exp
(−Y 2/Δ2

)
(ζ − Y )3

)
, (146)

where we have performed the temporal integration. Then, after two integra-
tions by parts, we obtain:

δE‖(L, y, θ, t) = −e′(θ)
[
15
4
Te

Ti
v2

dthi

(
1 − 2

5
uyi

vdthi

)]
μ0δjm√

π

L2
c

Δ2

exp(γt)
γ

× P

(
ζ − W̃ (ζ)

2
+ ζ2W̃ (ζ)

)
. (147)
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C Nonlocal Terms

Here, we compute the first non-local term ωdλ/ω of δf. In the field aligned
coordinates, the expression of the magnetic curvature-gradient drift is [20]:

vd = −mv‖
qJB

∂

∂ψ

(
JBv‖

)
, (148)

After the ψ derivative, we obtain:

vd = −1
q

∂

∂ψ

(
1
2
mv2

‖

)
−
mv2

‖
q

∂

∂ψ
(lnJB) ,

replacing 1/2mv2
‖ by E−μB and taking into account the conservation of the

kinetic energy E (static magnetic field and absence of electrostatic field) and
conservation of the magnetic moment μ, in the adiabatic regime, we obtain:

vd =
1
q
μ
∂B

∂ψ
+
mv2

‖
qB

∂B

∂ψ
,

where J = 1/B2. Indeed, from the definition of the Jacobian J = (1/B2) ×
exp

(− ∫
dψ(∇ × B) · ey/B

2
)

[27], we have:

∂ lnJ
∂ψ

= −2
∂ lnB
∂ψ

− μ0p
′

B2 ,

which can be approximated by

� − 2
LB

− 2μ0p

LpB3 ,

where Lp is the scale length of the pressure gradient and L is the scale length
of the magnetic field gradient. Noticing that β = 2μ0p/B

2, the above relation
becomes:

∂ lnJ
∂ψ

� − 2
LB

(
1 +

1
4
β
L

Lp

)
.

In the limit β � 1 even if the scale length of the pressure gradient is small
(L/Lp � 1), we can still get βL/Lp � 1 and write:

∂ lnJ
∂ψ

� − 2
B

∂B

∂ψ
, (149)

which gives J = 1/B2.
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Now, we have to compute the ψ derivative of B, keeping χ constant. From
(27), we obtain:

∂B

∂ψ
= − 2

L
. (150)

The purely magnetic drift becomes:

vd = − 2
qL

[
μ+

mv2
‖

B

]
. (151)

The bounce average of the product vdλ gives:

ωdλ =
1
τb

∮
dl

|v‖|

[
−2ky

qL

(
μ+

mv2
‖

B

)]
λ. (152)

With the definition of λ given in (33), we obtain

ωdλ = ωdcnλneq − 1
τb

∮
dl

|v‖|

[
−2ky

qL

(
μ+

mv2
‖

B

)
(sin2 θ)n+1

]
λneq.

(153)

In (153), T1, the first term of the expression between bracket becomes:

T1 = −2ky

qL
μλneq

1
τb

∮
dl

|v‖| (sin
2 θ)n+1, (154)

The parallel velocity is given by:

|v‖| =

√
2
m

(E − μB), (155)

and from (25), we obtain:

|v‖| =

√
2E
m

√(
1 − μBeq

E sin2 θ

)
. (156)

Then, the term T1 becomes:

T1 =
8ky

qv
μλneq

1
τb

∫ θm

π
2

dθ(sin2 θ)n+1(
1 − μBeq

E sin2 θ

)1/2 , (157)

where v is the velocity, θm is the colatitude of the mirror point and we
have used that l = L(π/2 − θ) so dl = −Ldθ. Taking Z = cos θ/A with
A = 1 − μBeq/E, we obtain:

T1 = −8ky

qv
μλneq

4
τr

∫ 1

0

dZ

(1 − Z2)1/2

(
1 −AZ2)n+1

. (158)
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Using the binomial formula, we obtain:

T1 = −8ky

qv
μλneq

4
τr

∫ 1

0

dZ

(1 − Z2)1/2

n+1∑
k=0

(−1)kCk
n+1A

kZ2k, (159)

= −8ky

qv
μλneq

n+1∑
k=0

(−1)kCk
n+1A

k 4
τr

∫ 1

0

dZ

(1 − Z2)1/2Z
2k. (160)

We give the following relation:∫ 1

0

dZ Z2k

(1 − Z2)1/2 =
π

2
(2k − 1)!!

(2k)!!
, for k ≥ 0, (161)

and perform the Z integration:

T1 = −2ky

qL
μλneq

n+1∑
k=0

(−1)kCk
n+1A

k (2k − 1)!!
(2k)!!

. (162)

Following the same approach, the second term T2 of (153) gives:

T2 =
1
τb

∮
dl

|v‖|

[
−2ky

qL

(
mv2

‖
B

)]
(sin2 θ)n+1, (163)

= − 2kyE

qLBeq
λneqA

n+1∑
k=0

(−1)kCk
n+1A

k (2k − 1)!!
(2k)!!

(
1

k + 1

)
. (164)

Summing all terms, we obtain:

ωdλ = ωdλneq

[
cn

+ 2
n+1∑
k=0

(−1)kCk
n+1

(2k − 1)!!
(2k + 2)!!

(
1 − μBeq

E

)k (
1 + k

μBeq

E

)]
, (165)

where ωd = −2kyE/(qLBeq).

D Calculation of the Constant Part Φ0

of the Perturbed Electrostatic Potential

Thanks to the simplicity of the 2D dipole, we are able to compute completely
Φ0. Remembering that, in the limit |ky|L � 1, Φ0 writes:

Φ0 = −
∫

dl
B

[
( qi

mi
)2
∫ 4πBdEdμ

|v‖| f0i ×
[

ω�i−ωdi

ω+ωdi

(
ωdiλ

ω

)]]
∫

dl
B

[
( qi

mi
)2
∫ 4πBdEdμ

|v‖| f0i ×
[

ωdi(ωdi−ω�i)
ω(ω+ωdi)

]] . (166)
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Using (165), the numerator noted N of (166) becomes:

N =
∫
dl

B

[
(
qi
mi

)2
∫

4πBdEdμ
|v‖| f0i

[
ωdi(ω�i − ωdi)
ω(ω + ωdi)

λneq

(
cn

+ 2
n+1∑
k=0

(−1)kCk
n+1

(2k − 1)!!
(2k + 2)!!

(
1 − μBeq

E

)k (
1 + k

μBeq

E

))]]
.

Using again the binomial formula, we can write:

N =
∫
dl

B

[
(
qi
mi

)2
∫

4πdEf0i ×
[
ωdi(ω�i − ωdi)
ω(ω + ωdi)

λneq

(
cn

+2
n+1∑
k=0

(−1)kCk
n+1

(2k − 1)!!
(2k + 2)!!

k∑
j=0

(−1)jCj
k

(
μBeq

E

)j (
1 + k

μBeq

E

))]]
.

We give the following integral∫ E/B

0

dμ

|v‖|μ
n =

√
2m

(2n)!!
(2n+ 1)!!

En+1/2

Bn+1 , (167)

and we perform the μ integration (remember that for the 2D dipole ωdi is
independent of μ):

N =
∫
dl

B

[
(
qi
mi

)2
∫

4πdEf0i

√
2miE

1/2
[
ωdi(ω�i − ωdi)
ω(ω + ωdi)

λneq

(
cn

+ 2
n+1∑
k=0

(−1)kCk
n+1

(2k − 1)!!
(2k + 2)!!

k∑
j=0

(−1)jCj
k

(
Beq

B

)j (2j)!!
(2j + 1)!!(

1 + k
(2j + 2)
(2j + 3)

Beq

B

))]]
.

The denominator D of 166 gives:∫
dl

B

[
(
qi
mi

)2
∫

4πBdEdμ
|v‖| f0i ×

[
ωdi (ωdi − ω�i)
ω(ω + ωdi)

]]
=∫

dl

B

[
(
qi
mi

)2
∫

4πdEf0i

√
2miE

1/2 ×
[
ωdi (ωdi − ω�i)
ω(ω + ωdi)

]]
. (168)

The terms being integrated over the energy vanish between the numerator N
and the denominator D, we obtain:

Φ0 =
∫
dl

B

[
λneq

(
cn + 2

n+1∑
k=0

(−1)kCk
n+1

(2k − 1)!!
(2k + 2)!!

×
k∑

j=0

(−1)jCj
k

(
Beq

B

)j (2j)!!
(2j + 1)!!

(
1 + k

(2j + 2)
(2j + 3)

Beq

B

))]
/

∫
dl

B
.
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Remember that B = Beq/ sin2 θ, we perform an l integration and we obtain:

Φ0 =
∫
dl

B

[
λneq

(
cn +

4
π

n+1∑
k=0

(−1)kCk
n+1

(2k − 1)!!
(2k + 2)!!

k∑
j=0

(−1)jCj
k

(2j)!!
(2j + 1)!!

π1/2Γ (j + 3/2)
Γ (j + 2)(

1 + k
(2j + 2)(j + 3/2)
(2j + 3)(j + 2)

))]
/

∫
dl

B
.

where we have used the following integral∫ π

0
dθ sinp θ = π1/2Γ ((p+ 1)/2)

Γ (p/2 + 1)
, (169)

where Γ is the classical Gamma function (Γ (n + 1/2) = (2n − 1)!!π1/2/2n).
Finally, we obtain:

Φ0 = λneq (cn + Sn) , (170)

where we have defined

Sn =
n+1∑
k=0

(−1)kCk
n+1

(2k − 1)!!
(2k + 2)!!

k∑
j=0

(−1)jCj
k

(2j)!!
2j−1(j + 1)!

(
1 + k

j + 1
j + 2

)
.

(171)

E Calculation of the Bounce Averaged
(δEy × B)/B2 Drift

Taking into account the expression (51) of the perpendicular electric field
δEy, the bounce averaged electric drift writes:

uEy =
1
τb

∮
dl

|v‖|
δEy

B

= − 4L
vτb

δEL,y,t(L, y, t)
Beq

1
n+ 1

×
∫ θm

π
2

dθ(
1 − μBeq

E sin2 θ

)1/2

(
Sn − (sin2 θ)n+1

)
sin2 θ.

Using the same change of variables as in Appendix C, we obtain

uEy =
4L
vτb

δEL,y,t(L, y, t)
Beq

1
n+ 1

×
∫ 1

0

dZ

(1 − Z2)

(
Sn(1 − AZ2) − (1 − AZ2)n+2

)
. (172)
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Again, we use the binomial formula and perform the Z integration (see Ap-
pendix C), we get:

uEy =
4L
vτb

δEL,y,t(L, y, t)
Beq

1
n+ 1

(
Sn
π

2
(1 − A

2
)

−
n+2∑
k=0

(−1)kCk
n+2A

k (2k − 1)!!
(2k + 2)!!

π

2

)
. (173)

Then, we substitute the expression of τb = 2πL/v and A = (1 − μBeq/E)
and obtain

uEy
=
δEL,y,t(L, y, t)

Beq

1
n+ 1

[
Sn

2

(
1 +

μBeq

E

)
−

n+2∑
k=0

(−1)kCk
n+2

(2k − 1)!!
(2k + 2)!!

k∑
j=0

(−1)jCj
k

(
μBeq

E

)j]
. (174)
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